DEFENSE INFORMATION INFRASTRUCTURE (DlII)

COMMON OPERATING ENVIRONMENT (COE)

Supplemental Consolidated DCE Application Development
Tools Programmer’s Guide
Version 1.0.0.0

December 20, 1996

Prepared by:
LOGICON, Inc.
1831 Wiehle Avenue, Suite 300
Reston, Virginia 22090

Distributed Computing Environment

Supplemental Consolidated DCE 1.1 Application
Development Tools Programmer’s Guide
Version 1.0.0.0

December 20, 1996

Defense Infor mation Systems Agency
Joint Interoper ability and Engineering Organization
Center for Standards
I nformation Processing Standar ds Depar tment

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

TABLE OF CONTENTS

L. INTRODUCGCTION L.ttt e e e e e e e e et e e e e e et e e aaa e e eaa e e enneeeanns 1-1
R ST To: o 01U T OSSP 1-1
S oo o1 TP O PO PP OUT PR 11
RGN o] o] [Tor= o1 11 TSP 1-1
1.4 REPOIT OF QANIZALION.eeuteiitei ettt ettt ettt et e et e e st et e sbee e shee e sabeesbeeabee e aaee e ambeesabeeabeeesaneesnbeesnreeennes 1-2
L5 REFEIENICES. ...ttt b e h e bt bbbt bt e bt e Rt e Rt bR Rt Rt Rt Rt b r e re e re e ne e 1-2

2. OVERVIEW OF THE DCECOE LIBRARY ...oieii e 2-1
2.0 PUIPOSE. ...ttt ettt ettt ettt oottt e e ottt e e e aabe e e ook be e 2o aabEe e e o eRbe e e e e R Ee e e e eaREe e e e aREee e e aanbeeeeebneeeeanreeaeaans 2-1
AV A = T s Lol 0 g Tor< o | £ TR U PR 2-1

2.2.1 Concerns in Building DCE APPIICALIONS.........cocuiiiiiiiiiieiie ettt sbe e saee e 2-1
2.2.1.1 DEfINE TN INTEITACESveeteeiteeste ettt r e sr e r e e sb e s b e e sreesbeenreesreenreenreens 2-1
2.2.1.2 Determine client-server access/Naming MOAEL..........coicueiiiiiiiiieiie et 2-1
2.2.1.3 Determing SECUILY FEOUITEIMENES.ueeiieeetieerteeeruteesbeeesteeesteeesaeeesabeeabeessbeeessseesnbessbeeanseeessneas 2-2
A N A B Y= (o] o = A oSSR ORI 2-2
2.2.1.5 DEVEIOP CHENE.....ceieeee ettt ettt ettt et be e sate e sa b e e et e e e ebe e e sabe e sabeesabeeebeeesnneas 2-3

2.2.2 How DCECOE SImMpIifiesS ThESE COMNCEINS.c..eieiieiiiie ettt ettt e sbe e sbee e saeeesnneaans 2-3

2.3 DCECOE PrOCRAUINES......cctieitieiteeitee ittt sttt ettt s bt st e st e e s b e sb e e sb e e sb e e sbe e sb e e sb e e sbeesbeesbeesbeesbeenbeesbeenreenreens 2-4

2.3 1 SEIVEN PrOCEAUIES........coiteiiteeitieitee sttt sttt sh et h et ae et a e a et e st s e e e e e bt s sn e e an e e an e e aneeareenne s 2-4

2.3.2 ClIENt PrOCEOUIES.......eeiiteeiteeitee ittt ettt a e s an e san e e sn e e e e ean e ean e eareenne s 2-4

2. 3.3 FEALUMNES ...ttt ettt bbbt bt E e R R e R e Rt SRt Re e R e Re e EeeRe e e e R bt eRe e be R eRe e e et nras 2-4
PR RS RS = o 1 1 TP URUPTPRURURPN 2-4
2.3.3.2 ACL Management/Reference MONITOLooiuieiieaiiie ettt saee s 2-5
2.3.3.3 Server AAMINISIFBLIONc.veeitieitieitieitee ettt sr e sr e sr e e s b e e sb e e sr e e sreesbeesreesreesreenreens 2-5
2.3.3.4 SEIVEE SEAITUD. ... vttt sttt sttt ettt b et et b e bbbt s bt s bt e ae e s b e s b e e b e e e e s b e ebeehe e b e nbesbenaeenenre s 2-5
2.3.3.5 Server ConNECtion N0 QUETYcoiueeiieiaiie ettt et eeste e sbee e ssbe e sabeasbe e e sbee e saseesnbeasbeeenseeesaneas 2-5
G RSN AN E o 1 172 o TP UPUPTPRURURPN 2-5
2.3.3.7 ServiCeability MESSA0EScoiiueieieiee it iee ettt ettt ettt e e st e bt e e b et sab e e snbe e st e e e be e e eneeas 2-5

3. BUILDING A DCE APPLICATION ..ottt ea s 3-1
3.1 Defining Interfaces (dI/.acf fIlES)i i 31

LD GEE AUUID ...ttt bbbt bt a e bt bbb R Rt R e e bbb Rt e bbb e e e ne e 31

Joint Interoperability and [December 20, 1996

Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide

Version 1.0.0.0

.12 WIITE TNE IDL fIlE ittt n e n e sne s 31
3.1.3 Define ACCESS CONLIOI FlE.... ..o e 32
3.1.4 ComMPIlE TN TNEEITACE.o ittt et b e e s ee e st e e s be e e sba e e saneesnbeens 3-2
3.2 Defining Serviceability M essages (.SAMS fIlES) ...coveiiiiieiiee e 3-2
3.2.1 Define @ ComPONENE NAIMEoiiiiiiiii ittt e ettt ettt e et e e e ebee e ssbe e sabeesbeeesbeeesaneesnbeans 3-2
3.2.2 ComMPIEtE the SAMS FlE......c ettt bbb e st e e e sbe e e saee e sareaans 33
3.2.3CoMPIIETE SAMS Tl ...ttt bbb e b e e e sbe e e saee e sareaans 34
3.3 DEVEIOPING ThE SEIVEN ...ttt h et a b e e st e e et e e e b e e e ebe e e sabe e sabeeenbeeenees 34
3.3. 1 Write the Server INItIaliZBIION..........oieiieiiee e 3-4
.3 2 WIHIE ThE IMIABNAGETce ettt ettt ettt ettt ettt b et b et e s bt e s be e e b e e e ebee e sabe e smbeesabeeeabeeesaneesnbeans 35
3.3.3 COMPIIETNE SEIVEN ...ttt ettt h et e st e e e b e e e ebee e sabe e sabeesbeeeabeeesaneesnreans 3-7
A T g L AT oo A (=T O 1T o | RSP TR 3-7
DY o] o 4 (T O [T o R RURRPN 3-7
3.4.2 COMPIE TNE ClIIENE ...ttt et sa et e s b e e et e e e sae e e sabe e s abeeenbeeenbeeesaneas 311
3.5 INStalliNg the APPIICALION ...ttt ettt e st e e be e e saee e sabe e sabeeeebeeesaneas 311
3.5.1 POSHINSLAIl SCHIPLS ... teeeutee ettt ettt ettt ettt ettt b e sat e e st e e st e e e be e e saee e sabe e sabeeembeeeabeeesaneas 312
3.5.2 ACL SELUD SCITPL . teeutertestesueeteste st ste et s be st e et et e be bt et et e sbeshe e b e s beeb e s ae e besbeebeeseeabesbesbeenbenbesbesneennenrens 3-18
3.6 AddIitioN@l EXAMIPIES......oiiiiieieie ettt ettt ettt h et st e et e e be e nae e sabe e ebe e e bee e aane s 3-18
3.6.1 SEECHION O SEIVES ...ttt r e b e b b e b e e s b e e sb e e sreesbeesreenreenreenreens 3-18
3.6.2 USE Of MUILIPIE SEIVEIS......eeieieiee ittt ettt ettt bt a et e e st e e e be e e sae e e sabe e sabeeenbeeenbaeesaneas 3-19
3.6.3 Three-tier APPIICALIONSei ittt ettt e bt e st e e e sbe e e sae e e ssbe e sabeesbeeerbeeesaneas 3-19
3.6.4 ObJeCt-DaSEA BINGINGcoiiteieieiieiee ittt ettt ettt sbe e sae e e sabe e sabe e ebe e e ebeeesaneas 3-19
3.6.5 Application-SPeCific ATIDULES........couiiiii et sb e saee s 3-20
3.7 SIrUCtUr € Of DCE NAIMESPACE. eeiuteieitie et ateeetee et e e stae et e sbe e e sbe e e saeeesabeesbeeaabeeeaseeesabeasnbeseabaeeaaneas 3-20
3.7.1 Cell Directory ServiCeS (CDS) NAMESPACEcciuueeiuieeiieeaitee ettt e siteesteesbeeestee e saeeessbeesbeesbeeesseeesaneas 3-20
3.7.2 SECUITY REGISITY .ttt ettt bttt b et s h e e s e e e et e e e be e e sae e e sabe e sabeeenbeeeabeeesaneas 322
Gl o [0S I [OOSR PTURTUROPRPRN 3-23

4, DCECOE ATTRIBUTES oottt e e e e e e e e e e e e ea e e eaaeaees 4-1
4.1 USE Of TNE DCED ...ttt ettt bt b e bt bt e bt bt e bt e b e s b e sbe s ae et e sbesbe et e sbesbesbeenne e 4-1
4.2 Example Server Configuration At TDULES..........ooiiiiiii et 4-1
4.3 DCECOE ALFTDULES. ... ittt sttt bbbt b e e b e b s bt s ae et e sbesbe e s e sbesbesbeenneneen 4-3
A A USING @EEFTDULES. ...ttt b e bt b e e e sate e s bt e s be e e sbee e sabeesaneens 4-4
4.4.1 SUCTADIENGIME.eetieteeite ettt ettt b bbbt bt bt e bt e Ee e bt e b e e bt e bt e bt e ane e ne e neeneereenne s 4-5
Y o . 1Y/ F=To] o] oo PR RUPROTRR 4-5
N Y oo LN TSP U PRSP 4-5
g Y o 0 7ot 1Y o | RV R OTRR 4-5
4.4.5 ACIFile and ACINBIMEFIIE.ooiieiee bbb e e 4-5

Joint Interoperability and ii December 20, 1996

Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

G e IS (1o TSP P TR PSP 4-6
oy N 11 o | 1 {0 T PP ROTRR 4-6
4.8 ACIMOIDESC.cetet ettt ettt ettt ettt b e e bt e e s e be e et e e e be e e ebee e ehbe e eabe e e be e e ebee e ehee e enbeeebeeebeeeeaneas 4-6
e o 1Y/ o [Y o PRV R TR 4-7
N (O 0o 11 i I 1 TSP U UV PRPT 4-7
Nt AU o [T = F TSP U UV PRP 4-8
D412 AUAITCIBSSES ...ttt sttt bt h et b e bt it e b e e bt s b e e ae e b e e b e s b e e abeebesbeehe e b e nbesbeeaeenbenbesbeennenrees 4-9
A.4.13 SEIVEITIIEANS.ve ettt ettt bttt b e b et e b bt s b e e b e e besbeshe e b e sbesbeeseenbesbesbeeneeneees 4-9
N B (@ o o TSP U PRSP 4-9
4.4.15 ServiCe and DEDUGSEIVICEuei ittt ettt ettt ettt ettt e sbe e sbe e e sabe e sabe e ebe e e sbe e e sabeesabeeebeeenees 4-10
D416 KEOYLADFIIE. ...ttt bbbt bt b e bt ae e b e eb e s bt e e e b b e bt e e b b aeenne e 4-11
N A O 1< 011 =77 o Lo TP U RO PR 4-11
4.5 Other interfacesfor acCesSING AttFTDULES........ooueiiiiie e 4-11
4.6 Client configuration ODJ ECES...........uii ittt ettt sbe e sabe e sabe e st e e e nbee e sane s 4-12
APPENDIX A - DCECOE MANUAL PAGES ... A-1
6101 B 101 o g I (ol [S o To) FO PR OURRRUSRR A-5
COEDCESINAIIZE_ClIENT(SIPC) +eeuteteitieeiiiee ittt ettt ettt ettt ettt et e be e s be e e sbee e sate e smbeesbeeesbeeesnneesnneaaas A-6
COEDCETINGAIIZE _SEIVE (BIC) «euteteiuteeiutiaiteeaatetaateeesuteesbeesteeasteeesseeesabeasbeesabeeaabeeesseeesabeesbeeaabeeessseesnseasas A-7
COEDCETT 08 S VEI S(BIIC) .utettttteiuteeitteeatee ettt e ateeesute e s sbeesbeeeabeeesbeeasabeasbeeabeeaabeeesaseesmbeasbeeaabaeessneesnreasas A-8
610 B0 o (= AV = w0 g (S o 1o) I PR OURRUSRR A-9
COEDCEINITIAliZE _ClIENT(SIPC) «.uteeeteieitieeiiee ettt ettt ettt sttt ettt e e st e e be e e sbee e sabe e sabeesbeeesbeeesnneas A-10
COEDCEINITIAlIZE SV (BIIC) 1-trteteeeiuteeiuiee ettt ertee e sttt e suteasbeeasbeeasbeeesaeeassbeasbeeaabeeaabeeesaseesnbeesbeeeaseeasnneas A-12
COEDCEINQUITE_SENVEL (BIPC) «uteteiteteitteeaiteaateeastee e sttt e ssteasbeaabeaasbeeesaeeaaabeaabeeaabeeasseeesabessnbeesbeesaseeasneeas A-15
COEDCEIS_ AUENOTIZEA(IPC) - .-teeiteteiteee ettt stee ettt ettt ettt et e be e saee e sabe e sbe e ebe e e sbee e sabeesmbeesbeeeabeeesnneas A-17
610D 0 =l [o o= LIS = A= (S o [0} F USSR A-19
610D 0 =t [o = RS = A= (S o [o) FO USROS A-21
APPENDIX B - SAMPLE APPLICATION ...ttt e B-1
(o= 1ol o | IO PO P RO U R OTRRPROPROPPO B-1
(o= 1o o OO PP P RO U R OTROTROPROPPO B-1
Joint Interoperability and i December 20, 1996

Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide

Verson 1.0.0.0
(02| o= 1 SO ERTRRRROPR B-2
(O3 Y I O 11= ¢ | S oSO RRTRRRRORR B-4
CAL CSEIN VI Cooeeeeeeeeeeeeeeee B-7
(OF Y IO 1 0 F=T 0 = o[S o U PP PO UPPRTROPPRN B-7
APPENDIX C - ACRONYMS ..o e aaas C-1
Joint Interoperability and v December 20, 1996

Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

LIST OF FIGURES

FIGURE 1 CALC STRUCTURE.........cociiitiiiit ittt sn e 3-12
FIGURE 2 INSTALL ..ottt b e st s e s r e e s sr e e e ae e s r e e sn e e nes 3-13
FIGURE S INSTALL.DCECP.......oi ittt sne e 3-15
FIGURE 4 INSTALLLDCEQCP. ...ttt sne s sne e 3-16
FIGURE 5 CALCAPRP. ...ttt et b e b e e sa e s b e e s b e s ab e e srae e s r e e sn e n s 3-17
FIGURE 6 CALC.SERVER ... 3-18
FIGURE 7 CALC.CLIENT ...ttt sen e e e e s sn e srae e esn e nes 3-18
FIGURE 8 SAMPLE APPLICATION CDS NAMESPACE.........cc oottt 321
FIGURE 9 SAMPLE APPLICATION SECURITY REGISTRYccciiiiiiiiiiiiei e 3-22
FIGURE 10 SAMPLE APPLICATION HOST NAMESPACE ..ot 3-23

LIST OF TABLES

TABLE 1 HOST SPECIFIC DATABASES.......coeuiiiiitieieieis ettt 41
TABLE 2 PREDEFINED COEDCE ATTRIBUTES ..ottt 4-4
Joint Interoperability and \ December 20, 1996

Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

1. INTRODUCTION

The Defense Information Infrastructure (DI1) Common Operating Environment (COE)
Supplimental Consolidated DCE 1.1 Application Development Tools Programmers Guide
provides instructions on using a set of application programming interfaces (API’s) developed to
simplify the development of client-server applications that take full advantage of the services of
DCE. These API’s are collectively called the DCECOE library.

1.1 Background

The objective DIl environment is atiered, open, and distributed software architecture built upon a
client/server model, which alows the separation of data, communications, and display software.
To accomplish this, DIl has defined a COE that includes support applications, platform services,
and reusable software components. To assist in the development of mission applications, the COE
provides integrated services to support the mission application software requirements and
software development environment.

The DIl COE includes distributed computing services to provide specialized support for
applications that may be dispersed among computer systems in the network but must maintain a
cooperative processing environment. The commercial software selected by the DIl COE to
provide these services is the Open Software Foundation’s (OSF") Distributed Computing
Environment.

1.2 Scope

This document is a practical guide to programming applications for the DIl COE DCE. Itis
intended for application developers who have basic knowledge of the concepts and services of
DCE, but do not have a detailed understanding of the API’s provided by the basic DCE product.
This documentation will augment, not replace, the OSF and TRANSARC documentation. The
following documents from the reference list in Section 1.5 are suggested companion documents to
this guide:

- OSF DCE Application Development Guide - Introduction and Style Guide
- OSF DCE Application Development Guide - Core Components
- Guide to Writing DCE Applications, Second Edition

1.3 Applicability
The information in this document relates to OSF DCE 1.1 and related updates included in DI |
COE Version 3.0.

! The acronym OSF also stands for the DIl Operational Support Facility. Unless specifically qualified, the
acronym as used in this guide will refer to the Open Software Foundation.

Joint Interoperability and 1-1 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

1.4 Report Organization
This guide contains the following sections:

- Introduction - Provides a background of the DIl COE Suppimental Consolidated DCE
1.1 Application Development Tools Programmers Guide, its scope, and report
organization.

- Overview - Provides an introduction to the rationale and basic concepts of the DCE
API’s for COE (DCECOE).

- Application Development - Provides an overview of the steps required to build aDCE
application using the DCECOE library.

- Appendix A - DCECOE man pages.

- Appendix B - Sample Application.

1.5 References

- OSF DCE Application Development Guide - Introduction and Style Guide, Open
Software Foundation.

- OSF DCE Application Development Guide - Core Components, Open Software
Foundation.

- OSF DCE Application Development Reference - Volume 1, Open Software
Foundation.

- Guide to Writing DCE Applications, Second Edition, O’ Reilly & Associates, Inc.

- DIl COE Integration and Runtime Specification (I&RTS), Version 2.0, October 23,
1995.

- DIl COE Integration and Runtime Specification, Appendix X, Distributed Computing
Environment, February 6, 1996.

Joint Interoperability and 1-2 November 22, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

2. OVERVIEW OF THE DCECOE LIBRARY

This section isintended as an overview of the DCECOE components. It serves as areference for
the function a component performs and why the component is necessary. It isimportant to
remember that the DI COE uses DCE version 1.1.

2.1 Purpose

The DCECOE library is designed to facilitate the development and deployment of manageable,
robust DCE client-server applications.

2.2 Basic Concepts

In order to make the DCECOE-based applications more manageable, configurable and to
guarantee non-interference, the DCECOE relies heavily on the concept of an application
repository which contains many of the meta operations, configuration options, structure, and
dependencies of these applications. This section describes some of the concerns that a typical
DCE developer will encounter, and then shows how use of the DCECOE library simplifies the
development.

2.2.1 Concernsin Building DCE Applications

Building arobust DCE application usually requires many similar steps and requires the use of
many of the numerous API’s provided in the standard DCE product. The developer will have
many choices to make in the design of their application. Developers will each make their own
choices based on factors such as experience, style, and application requirements. The following
are the basic steps required, and some of the typical concerns.

2.2.1.1 Definetheinterfaces

The first step in developing a DCE application is to define the client-server interfaces using the
DCE Interface Design Language (IDL). Some of the concerns include:

- How many interfaces are needed?

- What are their parameters?

- Doesit require any special IDL support

- What RPC semantics should be used?

The result may be one or more IDL files

2.2.1.2 Determine client-server access/naming model

The next step is to determine the method for clients to locate and access servers using the
facilities of DCE. Concernsinclude:
- Which DCE service model will be used?

Joint Interoperability and 2-1 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

- Which DCE resource model will be used?
- The number of servers required?
- How will client locate the server?
- Canadl serversberegistered in CDS?
- How many servers does client need to contact?
- One? Any one? A specific one? Multiple?
- Which kinds of naming elementsin CDS are used?
- entry, group, profile
- What names are used to identify servers?
(reference to DCE reference materials on design decisions)

2.2.1.3 Determine security requirements

If the application has security or privacy requirements, then the security features of DCE should
be utilized. Concernsinclude:
- How are server principals assigned and used?
- |If the server isrun by a user.
- If the server is automatically run through a noninteractive login.
- How many servers are available?
- How do serverstrust each other?
- How does client know the name of the server?
- Multiple principals
- What security settings does server demand?
- How does the client negotiate appropriate security settings with the server?

2.2.1.4 Develop server

A typical server implements logic to satisfy the interface defined in the first step. However, in
addition, the server must implement a variety of other routines, including the following:
- Server initialization processing

Registration with runtime
Registration with endpoint mapper
Registration in CDS
Support for serviceahility used to manage error messages

- Support for remote serviceability
Reference monitor to make access control decisions
- Management authorization routines to start/stop the server
Auditing routines to manage the capture of audit messages.
ACL manager to maintain access control information.

- Database preparation

- ACL initialization

- ACL nameto object resolution

Joint Interoperability and 2-2 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

2.2.1.5 Develop client

The client application makes use of the service interfaces offered by the server, but in addition it
must implement additional logic to initialize and manage the DCE interfaces. These include:

- Binding preparation to locate and bind to a server

- Logic to create and maintain authentication information

- Routines to prepare and maintain a serviceability interface for messages.

2.2.2 How DCECOE Simplifies These Concerns

The l&RTS DCE Appendix X defines many of these choicesin order to promote uniformity,
consistency and to avoid conflicts that can occur when alarge number of applications attempts to
share a set of common resources (CDS, Security, file systems etc.)

The DCECOE attempts to provide additional support for awide range of client server
development tasks and attempts to provide extensibility using the server configuration record and
through the use of optional callbacks.

The following example is representative of performing server initialization. This short code
fragment handles all of the details of server registration, login, ACL initialization, auditing, etc.

The include file, dcecoepublic.h islocated in the /usr/include/dcecoe directory and contains all
of the information necessary to use the DCECOE interfaces.

#i ncl ude <dcecoe. h>
#defi ne SEGVENT " CALC"
mai n(int argc, char **argv)

{
error_status_t st;
COEDCEi nitialize_server (SEGVENT,
S LOG N| S_REFRESH| S_KEYMGMT| S_ACL| S_AUDI T|
S_CDSEXPORT| S_LI STEN| S_CLEANUP| S_MGMTAUTH,
NULL, &st);
exit (st !'= rpc_s_ok);
}

This initialization sequence performs up to several thousands of lines of complex DCE logic
which your application need not contain. The actual functions performed are selected by using the
flags parameter. The manual pages contain the detailed information about each of the options.

Y ou are probably wondering how this application which has a single constant -- the SEGMENT
name -- knows about the dozens of constants and parameters that are required to satisfy the DCE
APIs. Thisinformation isrecorded in the dced's configuration record under the record name
CAL Cserver. Thisinformation getsinstalled in the dced when the server application isinstalled
on a particular machine.

Joint Interoperability and 2-3 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

2.3 DCECOE Procedures

Functions in the DCECOE RPC library provide a simplified mechanism for developing client-
server applications using the OSF DCE services. All of the procedure calls required to initialize a
DCE client or server are consolidated into a single procedure call. The routines make use of
sensible, but overridable, defaults to smplify the development of applications. The DCECOE
library takes advantage of and provides easy access to many of the features of OSF DCE Version
1.1, as described below.

The DCECOE library consists of the routines listed below and described in separate man pages.’

2.3.1 Server Procedures

COEDCEinitialize_server() - Initializes a DCE server
COEDCEsignal_server() - Signal a server to enter listen loop
COEDCEcreate _acl() - Creates an access control list (ACL)
COEDCEis_auth() - Makes an authorization decision
COEDCEfinalize_server() - Terminate server resources

2.3.2 Client Procedures

COEDCEinitialize_client() - Initializes a DCE client

COEDCEIlocate server() - Locates a server

COEDCEgetvector () - Retrieves a binding vector
COEDCEinquire_server() - Getsinfo about a server
COEDCEstart_server() - Prepare a handle for communications with a server
COEDCEfree servery() - Freesaserver

COEDCEfinalize_client() - Frees allocated resources

2.3.3 Features

2331 Security

The security of an RPC connection can be configured to any level from unauthenticated to
authenticated and encrypted. The DCECOE routines automatically perform server login,
authentication, password maintenance, and security context refresh. They guarantee that clients
use appropriate security choices as required by servers. DCE security mechanisms are used to
identify and authenticate servers rather than inquiring of servers themselves for security
identification.

2 The prefix for these routines will be changed to DCECOE in the next version, to be consistent with the overall
library name. The current names will be retained for the next two releases.

Joint Interoperability and 2-4 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

2.3.3.2 ACL Management/Reference Monitor

The server routines include an access control list (ACL) manager to allow remote management of
ACL’sfor the server. An application may define its own functions to be controlled (e.g.
read/write/delete for storage, print/control for a printer, view/update for document, etc.). At
built-in reference monitor makes access decisions based on the contents of the ACL database and
performs access auditing.

2.3.3.3 Server Administration

The DCECOE server library implements a management interface that allows the server to be
remotely managed using the standard dcecp. Server configuration information, including security
parameters, file locations, and application configurables, are maintained as extended attributes
within CDS.

2334 Server Startup

The DCECOE client library provides functions to allow a server to be started on demand if oneis
not currently running.

2.335 Server Connection and Query

The client library alows the client to connect to any available server, or to locate all available
servers and retrieve information about the serversin order to make a connection decision.
Decisions can be made based on the availability of the server, the ‘objects maintained by the
server, or any other information agreed upon between the client and server and recorded in the
configuration information within CDS.

2.3.3.6 Auditing

The server routines maintain an audit file that can be written by the reference monitor or the
application using standard OSF DCE audit functions.

2.3.3.7 Serviceability Messages

The DCECOE library functions make use of the OSF DCE 1.1 serviceahility interfacesto
generate and manage error messages. The server management interface allows messages of
different severity to be turned on or off and routed to different locations (e.g. error log, stderr,
etc.).

Joint Interoperability and 2-5 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

3. BUILDING A DCE APPLICATION

This section describes the steps required to build a DCE application using the DCECOE library.
The discussion assumes that the reader is familiar with the background information from Chapters
1 and 2 of the reference Guide to Writing DCE Applications. The discussion is based on the
sample calculator application supplied with the DCECOE library. This application is intended to
be used as atemplate for developing DCE applications.

3.1 Defining Interfaces (.idl/.acf files)

3.1.1 GetaUUID

Each DCE interface has a unique identifier (uuid) to ensure compatibility of the client and server.

DCE will only allow a binding between compatible interfaces. Get a unique identifier for each
interface to be defined, using uuidgen. The uuid information will become part of the IDL file that
defines the interface. An example uuid for the sample calculator application is as follows.

[uui d(0073a028- f bdb- 1e53-908e-08002b13ca26), version(1l.0)]

3.1.2 WritethelDL file

Define the interfacesin alDL (.idl) file. Insert the uuid from the previous step into the .idl file.
The interface definition is the same for a DCECOE application as for any other DCE application.
NOTE: If you are using the sample application as atemplate, you will need to replace the uuid in
the calc.idl file with a new uuid for the new interface.

The following is an extract from an IDL file defining the calculator interface. The full sampleis
included in Appendix B. The IDL file defines the calculator operations (e.g. add and subtract) as
well as the parameters for each operation. The IDL file also defines constants that will be used in
the client and server applications, such as return status codes (e.g., calc_s 0k).

i nterface cal cul at or

const long calc_s_ok = 0;
const long calc_div_by zero = 100;
I ong add (
[in] | ong a,
[in] | ong b,
[out] error_status_t *st
)
| ong subtract (
[in] | ong a,
[in] | ong b,
[out] error_status_t *st
)
Joint Interoperability and 31 December 20, 1996

Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

}

For more information about defining IDL files, please refer to Guide to Writing DCE
Applications Chapter 2 or OSF DCE Application Development Guide - Core Components
Chapters 17 and 18.

3.1.3 Define Access Control File

The access control file (.acf) is usualy optional, but is required when using the DCECOE library.
In the sample application, the ACF file specifies that the binding handle is managed by the client
application and explicitly passed as part of the interface. DCE will automatically include the
binding handle in the argument list, even though it is not included in the interface definition in the
IDL file. Thisoptionisnecessary in order to use security features. The sample ACF file also
informs DCE to report any communications errors in the defined status parameter st. The ACF
file for the sample application is shown below.

/* Sanple Application */

[explicit_handle]
i nterface cal cul at or

add([comm st atus] st);
subtract ([conm status] st);

}

The OS~ DCE Application Development Guide - Core Components Chapter 18 provides
additional information on using ACF files.

3.1.4 CompiletheInterface

Compile the .idl and .acf files using the idl compiler. Usually this will be automated by alinein
the application make file. This creates a header file for the interface (e.g., calc.h) aswell as client
and server “stub” files (e.g. calc_cstub.c and calc_sstub.c).

idl -cc_cmd "cc -c¢" -1/usr/include/dce -1/usr/include/dcecoe \
-1. calc.idl

3.2 Defining Serviceability M essages (.sams files)

3.2.1 Define a Component Name

The serviceability messages file defines message text and audit message numbers for use by the
application. All serviceability messages are identified by a six-letter sequence identifying the

Joint Interoperability and 3-2 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

“technology” and “component” that generated the message.® Determine a three-letter component
name for the application based on the segment prefix (e.g., cal for the sample application). These
three letters will appear on every system-generated message from the application. Insert the
component name in the front of the SAMS file, as shown in the sample below. There are no
differences in defining a SAM S file for a DCECOE application compared to any other DCE
application. NOTE: If using the sample application calc.samsfile as a template, there are
numerous places where the component name is used in variable names by convention, and must be
changed for a different application.

Part |

This part defines the | owest-|level table, the one that contains
all the

nmessages (defined in the third part) in a straight array.

conponent ca
tabl e cal _table
t echnol ogy dce

3.2.2 Completethe SAMSFile

Develop the serviceability message (.sams) file containing the audit events and messages for the
application. The following is an extract from the sample application file calc.sams. The entire file
isincluded in Appendix B.

Part |1

This part defines the sub-conponent table
serviceability table cal_svc_table handle cal _svc_handl e
start

sub- conponent cal _s_nmnager "manager" cal _i _svc_manager
sub- conponent cal _s_server "server" cal i _svc_server

end

#

Part lla

This part contains event codes for auditing

#

start

code add_event

text "add operation"
action ""
expl anation
end

Part |11
This part defines the serviceability messages.
#

3 Applications are supposed to be identified with the technology dce and an identifying number assigned by the
OSF. Until ablock of numbers are assigned for COE applications, a unique component name derived from the
segment prefix should be used.

Joint Interoperability and 3-3 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide

Verson 1.0.0.0
start
code cal _sad_endi ng
sub- conponent cal s server
attributes "svc_c_sev_error”
t ext "server initialize failed"
action "
expl anation
end

For more information on defining SAM S files, please refer to the OSF DCE Application
Development Guide - Core Components, Chapter 3, and the sams man page.

3.2.3 Compilethe SAM Sfile

Compile the .sams file using the sams command. This will also usually be part of a make file.

The sams program creates as many as 10 files, depending on the options given. In the case of the
sample application, only the message header (dcecamsg.h) and message (dcecal.cat) files are
required. The header file is used by any client or server routines that print serviceability messages.
The message file is used at execution time and must be delivered with the application segment.
The following is an example from the sample application make file.

sanms -oh cal ¢c. sans

3.3 Developing the Server

Write the server, making use of the DCECOE library routines. Usually the server setup code
should be in a separate file from the “ manager” code that implements the application logic of the
server. Additional background on developing servers can be found in Guide to Writing DCE
Applications Chapter 1. The next paragraphs walk through the initialization program and the
manager program for the sample application. The complete example is included in Appendix B.

3.3.1 Writethe Server Initialization

This program initializes the server and begins listening for clients. The program starts by
including the DCECOE public header file and the header file for the server interface. For
convenience it also defines the segment prefix for use in the DCECOE API calls.

/* Sanple server initialization code */

#i ncl ude <dcecoe/ dcecoe. h>/* for use with COEDCE APls */
#i ncl ude "cal c. h"

#defi ne SEGVENTSERVI CE " CALC"

For this smple program, the initialization main program consists of a single DCECOE library call,
as shown below. The COEDCEinitialize_server() routine reads the server configuration

Joint Interoperability and 3-4 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

attributes, and performs initialization based on these attributes and the values of flags provided.
In this case, the routine performs a DCE login for the server principal, sets up to perform key
management, auditing, and server management, and begins listening for client calls. Control
remains within the API until the server is signaled to stop.

mai n(int argc, char **argv)

{
error_status_t st;
COEDCEi niti alize_server (SEGVENTSERVI CE,
S LOG N| S_REFRESH| S_KEYMGMT| S_ACL| S_AUDI T|
S_CDSEXPORT| S_LI STEN| S_CLEANUP| S_MGMIAUTH,
NULL, &st);
exit (st !'= rpc_s_ok);
}

For more complex servers, additiona initialization logic would be required prior to the DCECOE
call to handle initial parameters, process configuration files, and open files or initialize databases.

3.3.2 Writethe Manager

The application-specific logic to implement the interface’ s operationsis included in the * manager”
program. The manager aso includes the DCECOE public include files and the header file for the
interface. In addition, it must include the messages header file (e.g. dcecalmsg.h) generated by
sams in order to use the definitions of serviceability messages and audit events.

#i ncl ude <dcecoe/ dcecoe. h>
#i ncl ude "cal c. h" /[* build by IDL */
#i ncl ude "dcecal nsg. h" /[* built by SAMS - audit codes */

The remaining portion of the manager consists of the definition of the operations defined for the
server interface. The operations are defined much as they would be if they were local subroutines
rather than remote procedures. Note that the binding handle bh is explicitly included at the front
of the argument list, even though it is not present in the IDL definition of the interface.

idl _long_int
add (
rpc_bi ndi ng_handl e_t bh,
idl _long_int a,
idl _long_int b,
unsi gned32 *st)
/* inplementation of add operation omtted */
}
Joint Interoperability and 3-5 December 20, 1996

Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

idl _long_int
subtract (
rpc_bi ndi ng_handl e_t bh,

idl _long_int a,
idl _long_int b,
unsi gned32 *st)

[* inplementation of subtract operation omtted */

}

The actual implementation of the add operation is shown below. The routine initializes two
structures used to identify the client who originated the call to the server, and to identify the
required permissions’. It then calls COEDCEis_authorized() to determine if the client has the
required permission. Based on the result of that call, the routine returns the result (e.g. a+b), or
returns an error.

CCEDCEclientid_t client;
COEDCEOobj ect _t obj ect;

/[* this is how we identify the client */
client.identity = | D_HANDLE
client.id.handle = bh;

/* this represents the object to | ook up and the required
perm ssions */

menset (&obj ect, 0, sizeof(object));

obj ect.nanme = "cal cul ator”;

obj ect. permanme = "a"; /[* add */

if (COEDCEi s_aut horized(&client, add_event, &object, NULL, st)
== aud_c_esl _cond_success)
return(atb);
/* st has status code */
return -1;

The second argument to the COEDCEis_authorized() cal identifies an audit event to be
initialized. Although not shown in this sample, an audit record isinitialized by the library and may
be written by the application if desired. Further information on auditing can be found in OSF
DCE Application Development Guide - Core Components, Chapter 33.

* The API is being revised to hide these structures inside the COEDCE library and simplify thiscall. The revised
API will be available in the next version.

Joint Interoperability and 3-6 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

3.3.3 Compilethe Server

Compile the server, to include the server stub created from the IDL file. Link with the libdcecoe
library. The following illustrates the compile and load statements extracted from the sample
application make file.

cC -c -g -DSOLARIS -D__EXTENSIONS__ -1. -I1../include \
-0 CALCserver.o CALCserver.c

cc calc_sstub.o CALCserver.o CALCmanager.o /usr/lib/libdcecoe.a \
-L/usr/lib/dce -ldce -Insl -lthread -1 m-o0 CALCserver

3.4 Writing the Client

3.4.1 Develop the Client

Write the client, making use of the DCECOE library routines. The following paragraphs walk
through the sample application, which is included in Appendix B.

The client must also include the DCECOE public header file as well as the interface header. For
convenience it also defines the segment prefix.

#i ncl ude <dcecoe/ dcecoe. h>
#i nclude "cal c. h"

#defi ne SEGVENTSERVI CE " CALC"

The client main program defines local variables required for the DCECOE library and the user
interface logic that runs the calculator application.

mai n(int argc, char **argv)

{
unsi gned32 err; /* COE error */
error_status_t dceerr; /* DCE error */
rpc_bi ndi ng_handl e_t handle; /* binding handle */

/* interface client logic */

idl _long_int a, b, c;
char oper and;
error_status_t st ;
i nt rc;

The client then initializes the DCE environment using COEDCEinitialize client(). Thislogic
primarily sets up internal structures for the client. The CHECK routine is implemented within the
client to check error codes and print an error message if required. See Appendix B.

err = COEDCEi nitialize_client(SEGVENTSERVI CE, 0, &dceerr);
if (CHECK(err, "initialize_client", dceerr))

Joint Interoperability and 3-7 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

exit(1);

The sample application contains two different routines to bind to a server, one called ssimple() and
one called complex(). The simple one requests a single server and attempts to bind to it, while
the complex routine looks at all available servers and selects one based on some criteria. Eachis
described below. The routine to be used is selected by changing the if statement shown below.

#if 1

handl e = sinple();
#el se

handl e = conpl ex();
#endi f

The smple case is shown below. Inmakesa single call to COEDCEIlocate_server () requesting
asingle binding. The library routine will locate a server using the pointer into CDS provided in
the client’s configuration attributes. See Chapter 4 for more information. The
COEDCEgetvector () routine is used to return the binding vector containing the results of the
COEDCEIocate_server() call®.

rpc_bi ndi ng_handl e_t

si npl e(voi d)

{
unsi gned32 count = 1;
unsi gned32 err;

error_status_t dceerr;

err = COEDCEI ocate_server (0, 0, 0, &count, &dceerr);
if (CHECK(err, "locate_server", dceerr) || count < 1)
return NULL;
el se
return (COEDCEgetvector())->binding_h[O];

}

The complex binding routine make more complete use of the DCECOE library capabilities. It
also begins with the definition of variables required by the library calls.

rpc_bi ndi ng_handl e_t
conpl ex(voi d)
{

unsi gned32 count = 100;
unsi gned32 one = 1;
rpc_bi ndi ng_handl e_t handl e = NULL;
server _t *servers;

® The current implementation of COEDCElocate_server() is not thread-safe because the binding vector is
maintained in the DCECOE library. The next implementation of the DCECOE library will correct this problem.

Joint Interoperability and 3-8 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide

Version 1.0.0.0
i nt i
unsi gned32 err;
error_status_t dceerr;

It also uses COEDCEIlocate server () to find servers, using the CDS pointer configured for the
client. Inthiscase it requests that up to 100 server bindings be returned.

err = COEDCEI ocate_server (C_NOOBJ, 0, 0, &count, &dceerr);
if (CHECK(err, "locate_server", dceerr) || count < 1)
return NULL;

If there are errors or no servers can be found, the routine returnsa NULL handle. If successful,
the routine looks at each server in turn, using COEDCEinquire_servers() withthe C_EXEC
option to determine if the server isrunning. If the server isnot running, the loop continues to
look at the next server. In this example, the routine selects the first running server, however a
more complex client could obtain additional information about the server to use in its selection.
The C_CONF option could also be used to obtain information about all configured servers,
whether running or not. Once a server is selected, the list of applicable servers returned from
COEDCEiInquire_serverg() isreleased using COEDCEfree_servers().

for (i=0; i<count; i++) {
err = COEDCEi nquire_server (C_EXEC, 0, &one, &servers,
(COEDCEget vector ())->binding_h[i], &dceerr);
if (CHECK(err, "inquire_server", dceerr) || count < 1)
conti nue;

pi ck one based on sone criteria */

/*
/[* (in this exanple, just select the first one running) */

handl e = (COEDCEget vector())->binding_h[i];
err = COEDCEfree_servers(servers, one, &dceerr);
CHECK(err, "free_servers", dceerr);

/* we found one we |iked */
i f (handle)
br eak;
}

return handl e;

}

Whether the simple or complex routine is used, the result will be a binding handle for a server, or
NULL isno server isfound. Inthe latter case the program exits.

if (handl e == NULL) {
printf("server not installed correctly\n");

Joint Interoperability and 39 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

exit(1);

If ahandle is returned, the client binds to the server usng COEDCEstart_server(). Inthis case,
the flags indicate that the DCECOE library should attempt to ping the server to ensure that it is
answering calls, it should attempt to start the server if it is not running, and it should establish a
secure connection using the parameters established in the server’ s configuration record. If it fails
to connect, the client exits. A more sophisticated client could include more graceful error
handling, such as seeking an aternate server.

err = COEDCEstart_server (C_PI Ng C_START| C_SECURE, O,
handl e, &dceerr);
if (CHECK(err, "start_server", dceerr))
exit(1);

Now that the client is bound to a server, the client enters aloop where it interacts with the user
asking for an operation and two values, and calling the appropriate server operation. Notice that
there are no DCECOE routines required during this part of the program, and the calls to the
calculator operations (e.g. add and subtract) are the same as if the operations were local
procedure calls, with the exception of the explicit binding handle. The client remains in thisloop
until the‘q’ operation is entered.

[* user interaction */
while (true) {
fprintf(stdout, "Operation: (op vall val2) ");
fflush(stdout); fflush(stdin);
rc = fscanf(stdin, "% %d %d", &operand, &a, &b);

if (operand == 'q') break;
switch (operand) {
case ' +':
¢ = add(handl e, a, b, &st);
br eak;
case '-'
¢ = subtract (handl e, a, b, &st);
br eak;
defaul t:
fprintf(stderr, "Invalid operand\n"); continue;
if (st == calc_s_ok)
fprintf(stdout, "%Wd % %9d = %¥d\n", a, operand, b, c);
el se

CHECK _STATUS(st, "operation failed", CONTINUE);
(void *)fgetc(stdin);

}
Thefinal task for the client is to terminate the binding and free up internal structures.
Joint Interoperability and 3-10 December 20, 1996

Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

COEDCEf i nalize_client (0, &st);

3.4.2 Compilethe Client

Client compilation is very similar to server compilation. Compile the client, to include the client
stub. Link with the libdcecoe library. The following is again an extract from the makefile.

cC -c -g -DSOLARIS -D__EXTENSIONS__ -1. -I1../include \
-0 CALCclient.o CALCclient.c

cc calc_cstub.o CALCclient.o /usr/lib/libdcecoe.a -L/usr/lib/dce \
-ldce -Insl -lthread -Im-o0o CALCcli ent

3.5 Installing the Application

The initialization scripts provided with the distribution are in preliminary form. They define three
levels of installation and removal; application, server, and client. Application level is performed
once per cell after the application's SEGMENT installation occurs. The server and client portions
are used on machines after SEGMENT installation occurs.

Creating an application using the sample requires hand modification of the Postinstall script.

The long term goal is to automatically generate the server installation based on a set of DCE
descriptors.

Joint Interoperability and 311 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Verson 1.0.0.0

3.5.1 Postinstall Scripts

Postlinstall

Install

. l

MainMenu INSTALL.DCECP StartInstall

L

cleanup CALC.app ' CALCserver ' CALCclient setupxattr install

‘ setupserver ‘ ‘ setupclient ‘

I

This diagram provides a structure of the current
installation process of a DCE server. The Processes
are internal calls made to programs inside the . The
Predefined processes are external calls.
Figure 1 CALC Structure
Joint Interoperability and 3-12 December 20, 1996

Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

1. app
MainMenu S — 2. server
3. client
server $TYPE client
APP
Set Unix Account _
name to ID SetiD =any
set SECGROUP to e SECGROUP= set SECGROUP = to
$SEGMENTgroup ${SEGMENT}-server $SEGMENTgroup
set SECORG = user default=none or user set SECORG = user
input or none inputs org name input or none
Call program
INSTALL.DCECP
Figure 2 Install
Joint Interoperability and 3-13 December 20, 1996

Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide

Verson 1.0.0.0

INSTALL.DCECP
CALC Segment
22 November 1996

Build UUID Llist

;

Initialize Variables

 —

!

ID=root
uIiD=0
GID=0

Verify Unix root
account exists

B

;

Read /etc/passwd file
for $ID

Set variable cell to

cellname
DIRECTORY=/h/$SEGMENT
Set variables e PRINCIPAL==$_h/
${SEGMENT]}server
/h/$SEGMENT/data
Build Unix Directories /h/$SEGMENT/data/keytab
/hI$SEGMENT/bin

;

login as cell_admin

;

cleanup previous
installation

Type of Install

APP
A 4

Call CALC.server

Call CALC.app

Call CALC.client

server-

T
app

client

setupxattr
create xattrschema
from $uuidlist

_ /.:/hosts/<hostname>/

logout of cell_admin

config/xattrschema

Joint Interoperability and
Engineering Organization

3-14

December 20, 1996

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Figure 3 INSTALL.DCECP

Install

server server or client?

setupserver setupclient
v
setupserver]
setupclient
/h/$SEGMENT/data/ L
Create keytab fle ——» keytab/
$SEGr\)/IﬂENT.tab Create cliententry ———» server _create

${SEGMENT/client

.]

Change permission chmod 750 keytab

A > chmod 750 keytab/ i
on Unix files o server modify
i $SEGMENT.tab Modify client entry ———» ${SEGMENT]client
Change ownership on chown $UID data
Unix files chgrp $GID data

'

Create server entry ——»

'

Modify server entry ———»

server create
${SEGMENT]}server

Add xattrschema to
${SEGMENT]}server

Joint Interoperability and 3-15 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Verson 1.0.0.0

Figure 4 INSTALL1.DCECP

CALC.app Create CDS Directory

/.:/h
[.:In/$SEGMENT
[.:Ih/$SEGMENT/hosts

Request groupname

ECGOUP val
exists?

r YES

input groupname

set groupname to
$SECGROUP

v

Request organization
name

ECORG val
exists?

r YES

set groupname to

input organization
name

Set orgname to
$SECORG

orgname is "none"

v

Create Group

Create org

Set ACL for /.:/h/
$PREFIX

Set ACL for /.:/h/
$PREFIX/hosts

Set ACL for /.:/h/
$PREFIX/groups

Create rpcgroup

$SEGMENT-servers
$SEGMENT-admin
$SEGMENT-users

org create $orgname

CALC CALC-servers rwitda
-io CALC CALC-servers rwdt
-ic group CALC-servers rwitda

group CALC-admin rwitda
-io group CALC-admin rwdt
-ic group CALC-admin rwtda

group CALC-admin rwt
-io group CALC-admin rwt

1.:Ih/$PREFIX/groups/
servergroups

Joint Interoperability and 3-16
Engineering Organization

December 20, 1996

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide

Verson 1.0.0.0
Figure 5 CALC.app
CALC.server
set SECORG = user . 1.:In/$SEGMENT/hosts
input or none " 1.:In/$SEGMENT/<hostname>
set SECORG = user . l.:/secl/principle/hosts/<hostname>/
input or none " ${SEGMENT}server
set SECORG = user . /.:/sec/principle/hosts/<hostname>/
input or none " ${SEGMENT}server
set SECORG = user . group add $groupname -member /
input or none " hosts/borg/${SEGMENT}server
set SECORG = user . organization add $orgname -member
input or none " $_h/${SEGMENT}server

account create $_h/${SEGMENT}server -
password abcdel23 -server yes -group
$groupname -org $orgname

set SECORG = user
input or none

l acl modify $_c/h/$SEGMENT/$_h -add

. 'user $_h/${SEGMENT}server rwitda"

" acl modify -io /$_c/h/$SEGMENT/$_h -add
"user $_h/${SEGMENT}server rwdt"

Modify the server entry

Joint Interoperability and 3-17 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Figure 6 CALC.server

CALC.client
This script is currently
not used.

)

Figure 7 CALC.client

3.5.2 ACL setup Script
TBD

3.6 Additional Examples

The following paragraphs provide additional examples of the use of the DCECOE library under
different circumstances.

NOTE: These examples are still under development.

3.6.1 Sdection of Server

The complex method of selecting a server previoudly presented did not exercise the full potential
of DCE. The client may use any information available, including that provided by standard DCE
calls, in order to select aserver. For example, the client could query the values of server
attributes in order to determine server capabilities. The client could PING the server and measure
the response time as afirst-approximation of the “distance” to the server.

Joint Interoperability and 3-18 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

The following code fragment shows how the client could determine the hostname of the server if
that is needed in selecting a server.

rpc_bi nding_to_string_binding(handl e, &sbinding, &dceerr);

/* get the | P address "xx.xX.Xxx.xx" as a string */

rpc_string_bindi ng_parse(sbhinding, NULL, NULL, & paddr,
NULL, NULL, &dceerr);

rpc_string_free(&sbinding, &dceerr);

/* convert to binary representation */

addr = inet_addr (i paddr);

rpc_string_free(& paddr, &dceerr);

/* retrieve our hostnanme */

hp = get host byaddr ((char *)&addr, sizeof(addr), AF_INET);

3.6.2 Useof Multiple Servers

The example demonstrates a single client and server as part of the same segment. The DCECOE
library makes no assumption about the number of servers used by a client, or the names of the
segments.

To use multiple servers, the client srvrconf entry must be configured with multiple services
attributes, one for each service to be used. Each entry must identify the interface to the service,
as shown in the example in Section 2.4.6. The second argument of the COEDCElIlocate_server ()
and COEDCEinquire_server () routinesis an index of the service in the configuration record.

3.6.3 Three-tier Applications

Applications may be both a client and a server in athree-tier arrangement. The DCECOE library
makes no restriction in thisregard. NOTE: Since the DCECOE client libraries are not currently
thread-safe, the application must take care to seridize the cals to the DCECOE library routines
between COEDCElIlocate server() and COEDCEgetvector ().

NOTE: A future version of this guide will provide an example of athree-tier application using
multiple servers.

3.6.4 Object-based Binding

The standard DCE has the ability for serversto associate themselves with “objects’ (identified by

uuid’'s), and for clientsto request a binding to any server providing a specified object. The objects

supported by a server are identified within its rpcentry within CDS. This facility is designed to

alow the location of coarse-grained objects (e.g. specific branches of a bank, or classes of users).
It is not designed for fine-grained objects (e.g. an individual account in a bank).

The DCECOE library allows the use of this capability. The server isresponsible for registering
supported objects using standard DCE calls. The client must have the uuid’s of desired objects

Joint Interoperability and 3-19 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

pre-configured within its services attribute for the appropriate interface. The third argument to
COEDCEIlocate _server() isanindex of an object to locate.

NOTE: A later version of this guide will present an example using this capability.

3.6.5 Application-specific Attributes

The idea of extended attributes in the client or server configuration entries is a powerful capability
that can also be used directly by the application. Applications may define additional attributes as
part of the client or server installation. Vaues may be assigned to the attributes during
initialization, during execution, or by an administrator at any time.

The DCECOE library does not currently provide any convenient facility for obtaining attributes’,
however the application can obtain them using standard DCE API’s.

3.7 Structure of DCE Namespace

This section illustrates the use of the DCE namespace by an application using the DCECOE
library.

3.7.1 Cédl Directory Services (CDS) Namespace

The illustration below shows the structure of CDS after the installation of the sample CALC
application segment on host1.

® The next version of the DCECOE library will contain functions to allow an application to easily obtain extended
attributes about the client or server.

Joint Interoperability and 3-20 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

1./
Just as in COE file space, there is a CDS L

directory under /.:/h for each segment.
ACL permissions allow server principals to

create and modify entries. |:
|

The groups directory is used to contain the
CALC rpcgroup entry that is used to select a
server at random. Each server rpcentry is

The hosts directory is used group CALC-servers rwitda registered in the group.
to contain the rpcentries for -io group CALC-servers rwdt NOTE: An RPC group is not the same as a
each server. -ic group CALC-servers rwitda security group.
hosts roups
> group

group CALC-servers rwt
-io group CALC-servers mwt

rpcgroup
hostl servergroup

user host/hostl/CALCserver rwitda
-io user host/host1/CALCserver
rwdt

members:
rpcentry /.:In/CALC/hosts/hostl/server
server)¢
Each server rpcentry identifies

interfaces: interface(s) for the server

calculator application logic as well as ACL

rdaclif management (rdaclif) and

servicability servicability interfaces.

Figure 8 Sample Application CDS Namespace

Thisis asuggested CDS organization in accordance with the recommendations in the I&RTS
Appendix X. This structure is not suitable for all purposes. For example, if there is a server
installed on every host, this structure could create a large number of host directory entries. In
some cases it is more efficient to group servers by function rather than host name. This structure
is used by the sample application and its installation scripts. However it is not enforced by the
DCECOE library. The only requirement is that the client srvrconf entryname attribute point to an
rpcgroup or rpcprofile in CDS as a starting point for the search for a suitable server. Chapter 4
contains additional information on the use of attributes. The use of /.:/n/SEGMENTNAME to
organize CDS is strongly encouraged.

Joint Interoperability and 321 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

3.7.2 Security Registry
This section illustrates the DCE principals and groups used in the sample CALC application.

This group is used to The CALC-admin group is
control access to the server used to control
i interfaces. Each user that administratiive access to
@ will run the client should be group application information.

a member of the group. Members of the group

Additional groups should be should be able to change
Each instance of a server runs created to assign different acl's, add members to
under its own DCE principal. access rights to portions of Fﬁ groups, start/stop servers,
Each has the same name, butis N the interface. N install/deinstall clients and
in a separate directory servers.

(e.g. /.:/hosts/hostl/CALCserver)
CALC-users { CALC-admin J
CALC-servers

members: The CALC-servers
host1/ group is used to
CALCserver control access to CDS

entries for servers.
Each server principal

CALCserver is a member.

Figure 9 Sample Application Security Registry

By convention there is a separate server principal for each server instance so that audit records
precisely identify the originator of all actions. The installation scripts for the sample calculator
application follow this convention. However, thisis not required by the DCECOE library. The
only requirement is that the principals attribute in the server configuration record contain a valid
principal to use in running the server. Chapter 4 contains additional information about the use of
attributes.

Also by convention, the installation scripts for the calculator application create three groups. The
CAL C-usersgroup contains users who are alowed to run clients that accessthe server. The
CAL C-admin group contains users who are allowed to administer the application, including
modifying ACLs for the server, assigning usersto CALC groups, or starting/stopping CALC
servers. The CAL C-serversgroup contains al the server principals.

Additional groups may be needed for specific applications. For example, a CAL C-adder s group
could be created, along with suitable ACLs within CDS, containing users who are allowed to
perform the add operation but not the subtract operation.

Joint Interoperability and 3-22 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

3.7.3 Host Table
This section illustrates the use of srvconf and xattrschema.

hostl host2
Each installed server is Extended attributes used by
registered in the server the DCECOE routines are
—1 configuration record for its - registered in the attribute == T
host. config schema on each host. | config
srvrconf srvrexec ‘ xattrschema ‘ srvrconf
group CALC-admin ??? group CALC-admin ??? group CALC-admin ??? |
group CALC-admin ??7? -io group CALC-servers ??? -io group CALC-admin ??? -io |

——————————————— CALCserver (" CALCserver) (various " CALCclient |
(i) (oo (e | (G
i group CALC-admin ??? group CALC-admin ???

Figure 10 Sample Application Host Namespace
Joint Interoperability and 3-23 December 20, 1996

Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

4. DCECOE Attributes

4.1 Useof the DCED

The dced runs on every DCE machine and provides a set of host-specific services for managing
DCE applications on those systems. In particular, the DCE supports a set of five databases which
are all ACL-secured and are appropriately junctions into the DCE namespace. The DCECOE
makes extensive use of all of these services.

srvrconf - server Maintains a set of extensible records which
configuration describe a server

Used to start instances of servers

Servers use these records as initialization and
configuration parameters

SrVrexec - server Maintains arecord of arunning server
execution Used to stop instances of servers
hostdata - host file Provides remote access to local system files
services Used for performing remote configuration and
reporting.
Currently only used to provide remote access to
local audit files

keytab - key table services | Provides remote access to server key tab files
Used during installation, password maintenance,
and backup
xattrschema - extended Used as schema database to describe “extended
attribute schema definition | attributes’ in the srvrconf database

Table 1 Host Specific Databases

4.2 Example Server Configuration Attributes

The following is an example of the srvrconf information for the sample application, as printed
using the command dcecp -c¢ server show CALCser ver. The extended attributes used
by the DCECOE library are identified with a COE/ prefix. The remaining attributes are standard
server attributes used by dced. For further information see the xattr schema(8r pc) manual page.

{uuid 4222ef 4c- 365c-11d0-8016-ccfcO0d7baa77}
{program CALCserver}

{argunents {}}

{prerequisites {}}

{keyt abs 418bd36e-365c-11d0-8016-ccfcO0d7baa77}
{entrynanme {}}

{services
{{ifname rdaclif}
Joint Interoperability and 4-1 December 20, 1996

Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

{annotation {Standard ACL interface}}
{interface {47b33331-8000- 0000- 0d00-01dc6c000000 1.0}}
{bindings {}}
{obj ects 01eb03d6- e2ee-11cf-91f 9- ce9cdd02aa77}
{flags {}} o
{entryname /.../gccs.sm|.m |/ h/ CALC/ hosts/ borg/server}}
{{ifname cal cul ator}
{annotation {Basic cal cul ator application}}
{interface {0073a028-f bdb- 1e53-908e-08002b13ca26 1.0}}
{bi ndings {}}
{objects {}}
{flags {}} o
{entryname /.../gccs.sm|.m |/ h/ CALC/ hosts/ borg/server}}
{{ifname serviceability}
{annotation {DCE Serviceability}}
{interface {000cf72e-0688-1ach-97ad-08002b12b8f8 1.0}}
{bindings {}}
{obj ects 01eb03d6- e2ee-11cf-91f 9- ce9cdd02aa77}
{flags {}} o
{entryname /.../gccs.sm|.m|/h/ CALC/ hosts/ borg/server}}}
{principals /.../gccs.sm|.ml/hosts/borg/ CALCserver}
{starton {}}
{ui d 500}
{gid 1}
{dir /h/ CALC/ bi n}
{ COE/ DebugServi ce coe: *. 9: TEXTFI LE: / h/ CALC/ dat a/ server. out }
{ COE/ Server Threads 5}
{ CCOE/ Acl Mgr Type acl obj ect,flat}
{ COE/ Acl Mgr Uui d 6ba40bf 6- e2ee-11cf-8d13-ce9cdd02aa77}
{COE/ Acl Mgrinfo Cal cul ator {Sanple Cal cul ator Refnon}}
{ COE/ Acl Mgr Desc ¢ control 8}
{COE/ Acl MgrDesc t test 64}
{ COE/ Acl Mgr Desc a add 128}
{COE/ Acl Mgr Desc s subtract 256}
{ COE/ Acl Mgr Def aul t group subsys/dce/dced-adm n ct}
{ COE/ Acl Mgr Def aul t group CALC-adm n ct}
{ COE/ Acl Mgr Def aul t user hosts/borg/ CALCserver asct}
{COE/ Audi t First 281587713}
{ COE/ Audi t Event s 2}
{ COE/ Audi t Msgs cal }
{ COE/ Mgt Mapping tttta}
{ COE/ Servi ce WARNI NG TEXTFI LE: / h/ CALC/ dat a/ war ni ng. | og}
{ COE/ DcecpOp
{rpcgroup add /.../gccs.sm|.m|/h/ CALC/ groups/servergroup
-menber /.../gccs.sm|.m|/h/CALC/ host s/ borg/server}}
{ COE/ Keyt abFi |l e / h/ CALC/ dat a/ keyt ab/ CALC. t ab}
{COE/ Audi t Trai | /h/ CALC/ dat a/ audi t. aud}
{ COE/ Acl Setup / h/ CALC/ bi n/ CALCacl set up}
{CCE/ Acl Fi |l e / h/ CALC/ dat a/ CALC}
{ COE/ Acl NaneFi |l e / h/ CALC/ dat a/ CALCnane}

Joint Interoperability and 4-2 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

{COE/CientBind {{dce hosts/borg/ CALCserver default default dce}
/.../lgccs.sm|.m |/ h/ CALC/ host s/ borg/server}}

The information in this record can be divided into two categories. DCE defined attributes (such as
program, directory, uid, services) and DCECOE defined extended attributes. The DCECOE
attributes are all catalogued in the extended attribute database of each dced.

Thetrick of using the DCECOE library isto correctly configure these records. All detailed
activity is performed following the settings in the repository.

A note about repository attributes. Standard DCE attributes cannot be changed once created. In
order to change a DCE attribute, the record must be deleted and recreated. However DCECOE
attributes can be changed at any time, and will normally take effect the next time the server is
initialized. All changesto configuration records are controlled by ACLs in the dced. The dced
repository can be edited from anywhere (thanks to CDS and RPC) facilitating remote
management, troubleshooting, verification and configuration management. Of the server
initialization flags, certain flags require the presence of attributes in the configuration record. The
manual pages describe which attributes are required for which flags.

4.3 DCECOE Attributes

DCE extended attributes in the extended attribute registry do not define data; they only describe
the data that can be instantiated (i.e. placed on a srvrconf record). The data types supported are:
printstring, stringarray, int, bytes, uuid, and binding. Each attribute can be further classified as
being single value or multi-value. This controls the number of times that the template can be
instantiated on a single object. The following table describes the predefined COEDCE attributes.
The application writer is encouraged to use attributes and interfaces exist to query/modify these
values administratively and programatically. The following table lists the COEDCE attributes,
which are described in following paragraphs.

Name Multi- Type Format Description
value
SvcTableName yes printstring 3 chars Serviceability table names
MgmtMapping no printstring 5 chars Management function mapping to
MgmtAcl no uuid uuid CSII_D of management ACL
MgmtAclMgr no uuid uuid Manager type uuid of management
AclFile no printstring path/file name II:IC;L'[O save ACL database
AcINameFile no printstring path/file name File to save ACL name translation
AclSetup no printstring path/file name ACL initialization script file
Joint Interoperability and 4-3 December 20, 1996

Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide

Version 1.0.0.0
Name Multi- Type Format Description
value
AclMgrUuid no uuid uuid ACL manager type uuid
AclMgrinfo no stringarray 2 elements: Information identifying the ACL
name, help manager (name and annotation)
AclMgrDesc yes stringarray 3 elements: Permissions (character name, title,
name, and decimal value)
description,
decimal value
AclMgrDefault yes stringarray 3 elements: Default ACLs for server objects
type, key, (‘group’ or ‘user’, identity of group
permissions Of User, permissions)
AclMgrType no printstring Comma ACL Database characteristics
Separated:
aclobject,
defcontainer.
defobject name,
uuid
AuditTrail no printstring path/file name File name or *central’
or ‘central’
AuditFirst no integer decimal value First decimal event number
AuditEvents no integer decimal Number of events
AuditMsgs yes printstring 3 char. Message component for events
AuditClasses yes printstring characters Defined classes, filenames
ServerThreads no integer decimal Max. number of server threads
DcecpOp yes stringarray dcecp command | dcecp commands - i.e. for CDS,
profiles
Service yes printstring type:destination: | Serviceability setting
name
DebugService yes printstring component: Debug Serviceability setting
level.level:
destination:nam
e
KeytabFile no printstring path/file name Filename of keytab file
ClientBind no binding See binding in Client binding requirements - used
xattrschema by server
man page

Table 2 Predefined COEDCE Attributes

4.4 Using attributes

The following paragraphs describe the extended attributes used by the DCECOE library routines.

Joint Interoperability and
Engineering Organization

4-4

December 20, 1996

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

4.4.1 SvcTableName

This attribute is used to list the serviceability component names used by this application. The
DCECOE library uses the coe component, but your application may use others. This attribute is
intended to be used during verification to detect the appropriate message catalogs are installed
and to ensure that conflicting components are not installed. A component name must consist of 3
lower-case characters.

4.4.2 MgmtM apping

This set of attributesis used to control and configure the management functions that al DCE
applications support. Management functions alow a client to request interface information, server
principal name, or statistics from the server, to ping the server, or to stop the server. For a
further discussion, seethe rpc_mgmt_set_authorization_fn(3) man page. There are five
management operations and the M gmtmapping attribute defines the relationship between
permissions understood by the ACL manager/Reference monitor permissions. The attribute
defines the permissions that must be present to allow the client to perform the management
function. If this attribute is missing, the DCECOE library assumes 'ttttc' representing the standard
'test’ and 'control' permissions. The ACL to be checked is attached to the srvrexec object for the
server.

4.4.3 MgmtAcl

This attribute defines the UUID of the ACL object which will be used as the permission settings
associated with management operations. If this parameter is missing, the DCECOE creates a
default ACL object named mgmt under the server’s rpcentry (e.g.

[.:/Ih/CAL C/hostg/bor g/ser ver /mgmt.

444 MgmtAclMgr

Thisisthe UUID of the ACL manager which imposes semantics over the management ACL. (i.e.

the routine that provides a reference monitor to test permissions to the management functions. If
not supplied, DCECOE uses the ACL manager UUID associated with the standard ACL manager
supplied with DCECOE.

Note: none of the Mgmt attributes are used, if the caller supplies the 'mgmt_function' callback
during COEDCEinitialize_server ().

445 AclFileand AcINameFile

The AclFile and AclNameFile attributes define the names of the files used to house the default
ACL database and its ancillary name-to-ACL database. If their values do not specify absolute

Joint Interoperability and 4-5 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

pathnames, the files will be stored under /h/SEGM ENT/data. A ".db" extension is added to the
names provided. These attributes are mandatory when using the S_ACL flag.

4.4.6 AclSetup

The AclSetup parameter defines the name of an executable file (usually a dcecp script) which will
be run to initialize the ACL database. This script isrun as a side effect of server initialization
whenever the ACL database is not present. It isanatural extension to server installation and
configuration, but is delayed until the first time the server starts because the server must be
running in order to perform ACL updates. When the DCECOE recognizes that the ACL
databases are empty, it runs this program, which by default is the /h/SEGM ENT /bin/aclsetup
script. This script performs a configurable set of acl show and acl modify dcecp commands
which can be used to modify initial ACLsto any configuration without hard-coding thisin the
application.

Two procedures are provided as part of the default acl manager to simplify ACL setup. The
command newacl is used to create new ACLs and setacl is used to modify the ACL. Hereisan
extract from the default aclsetup program.

#/ usr/ bi n/ dcecp
/* support routines skipped */
getbind [lindex $argv 0]

newacl cal cul ator
setacl cal cul ator add {group acct-adm n asc}

When newacl! is used, DCECOE uses the values of the AcIM gr Default attribute to give the ACL
an initial set of values. This attribute is multi-valued and can contain any combination of ‘group’ or
‘user’ ACL entries.

Every ACL manager defines a UUID which represents a set of permissions supported by the ACL
manager. The AclM gr UUID attribute allows the user to define this UUID. This attribute must be
present in order to usethe S_ACL attribute. The value may be assigned using uuid_create(3) or
more often by uuidgen(1).

447 AclMgrinfo

The AclM grinfo attribute represents the string information including the ACL Managers name
and description. This attribute is mandatory when using the S_ACL flag.

4.4.8 AclMgrDesc

The AclM gr Desc attribute is a multi-valued string array, with each array entry consisting of three
elements; a name, description, and decimal value. Each part of the array represents a permission

Joint Interoperability and 4-6 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

bit that the ACL manager implements. The are several ACL bit permissions that are recommended
by OSF, listed in the table below. These are defined in <dce/aclbase.h> . To avoid confusion on
the part of administrators, these values should be used whenever they are applicable.

Permission Value
read 1
write 2
execute 4
control 8
insert 16
delete 32
test 64

449 AclMgrType

The AclM gr Type attribute is reserved to define the structure and type of the ACL Manager. It
consists of a string which can contain one or more of the supported object types and one of the
structure types:

The following object types have been defined:
aclobject - supports ACLs on simple objects
defobject - supports default inheritance ACLs on objects
defcontainer - supports default inheritance ACLSs on containers

The following structural attributes are defined:
flat - the database contains no hierarchical structure
hier - the database supports full hierarchy (e.g. afilesystem)
bilevel - the database does not support containers within containers
spar se - the database supports sparse searching
noleaf - the database permits hierarchy but only as a side effect of
creating aleaf

Note: only the 'flat’, 'bilevel’, and 'hier' structure are currently supported.

4.410 AuditTrail

The AuditTrail attribute represents the filename into which audit records will be created. The
special name "central” is used when the client wishes to use the central audit trail supported by the
audit daemon. The use of the central audit file is strongly encouraged.

Joint Interoperability and 4-7 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

4.4.11 AuditFirst

The AuditFirst attribute provides the numeric value representing the first audit event. In
DCECOE a SAMSfile is used to create DCE messages which will be used for audit events. The
first message number is placed in AuditFirst and the number of events are placed in AuditEvents.
The name of the SAMS component is placed in AuditM sgs. See the Application Devel opment
Guide - Core Components Chapter 3 for more information.

Here is an example calc.sams file for the sample application:

Part |

This part defines the | owest-level table, the one that
cont ai ns

the nessages (defined in the third part) in a straight array.
conponent ca

tabl e cal _table

t echnol ogy dce

Part |1

This part defines the sub conponent table, each el enment of
which contains the base address of one of the subconponent
nmessage tables.

serviceability table cal_svc_table handle cal _svc_handl e

start
sub- conponent cal _s_manager "manager" cal _i _svc_nmanager
sub- conponent cal _s_server "server" cal i _svc_server

end

#

Part lla

This part contains event codes for auditing

#

start

code add_event

text "add operation”
action ""
expl anation
end

start

code subtract_event

text "subtract operation”
action ""
expl anation
end

Part |11

Joint Interoperability and 4-8 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

This part defines the serviceability messages.
#

The value of AuditFirst must match the value of the first application-defined event, in this case
add_event, from the dcecalmsg.h file (smallest_cal_message id or add_event). The following
is an example of the dcecalmsg.h generated from the sams file above.

/* Generated fromcal c.sams on 1996 07-21-11: 31: 40. 000 */
/* Do not edit! */

#if I def i ned(_DCE_DCECALMSG)

#def i ne _DCE_DCECALMSG

#def i ne add_event 0x10c8b001
#def i ne subtract_event 0x10c8b002
#def i ne cal _sad_endi ng 0x10c8hb003
#define cal _i _svc_nmanager 0x10c8hb004
#define cal _i _svc_server 0x10c8hb005
#define smal |l est _cal _nmessage_id 0x10c8b001
#defi ne bi ggest_cal _nessage_id 0x10c8b005
#endi f /* ldefined(_DCE_DCECALMSG) */

4.4.12 AuditClasses

The AuditClasses attribute is used to catalog the event classes which are distributed with this
server. An audit classis afile used to facilitate the administration of audit filters. See the OSF
DCE Administrators Guide - Core Components for more information about audit classes and
filters.

4.4.13 ServerThreads
The Server Threads attribute represents the number of call threads that the DCE runtime creates
in order to service incoming RPC requests. Thisvalueisused intherpc_server listen() call

whenthe S LISTEN flag is used. Use the value of 1 if the server's manager functions are not
capable of being multi-threaded.

4.4.14 DCEop

The DCEop attribute is used to collect operations to be performed when the server initializes.
These are typically dcecp commands which would be difficult to perform using programming
APIs. An example might be creating a CDS directory. Thisis a multi-valued attribute and will be
invoked by the server by executing dcecp as follows:

dcecp -c DCEopl; DCEop2

Joint Interoperability and 4-9 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

4.4.15 Service and DebugService

The Service and DebugSer vice attributes are used to set serviceability options. Please refer to the
svc_route(5) man page for an explanation of using these serviceability settings.

The Service entry consists of three fields specify routing for non-debug serviceability messages.
The format is as follows:

sev:out _formdest[;out_formdest . . .] [GOESTO {sev | conp}]

The sev (severity) field specifies one of the following message severities: FATAL, ERROR,
WARNING, NOTICE, NOTICE_VERBOSE. Theout_form (output form) field specifies
how the messagesof a given severity level should be processed, and must be one of the
following: BINFILE, TEXTFILE, FILE, DISCARD, STDOUT, STDERR. The out_form
specifier may be followed by a two-number specifier of the form: .gens.count where: gensis
an integer that specifies the number of files (i.e., generations) that should be kept and count is an
integer specifying how many entries (i.e., messages) should be written to each file. The dest
(destination) field specifies where the message should be sent, and isa pathname. The field
can be left blank if the out_form specified is DISCARD, STDOUT, or STDERR. The field
can also contain a%ild string in the filename which, when the file is written, will be replaced by
the process ID of the program that wrote the message(s). Filenames may not contain colons or
periods.

The format for the DebugSer vice routing specifier string is:

conponent : sub_conp.level,...:out_formdest[;out_formdest...]
[GOESTO {sev | conponent}]

Where out_form, dest, and sev have the same meanings as defined earlier in this reference
page. Nine serviceability debug message levels (specified respectively by single digits from 1 to 9)
are available. The precise meaning of each level varieswith the application or DCE component
in question, but the general notion is that ascending to a higher level (for example, from 2 to
3) increases the level of informational detail in the messages. Setting debug messaging at a certain
level means that all levels up to and including the specified level are enabled. The general
format for the debug level specifier string is:

conponent : sub_conp. | evel , sub_conp. | evel , .

Where: component isthe three-character serviceability component code for the program

whose debug message levels are being specified, sub_comp.level is a serviceability subcomponent
name, followed (after a dot) by a debug level (expressed asasingle digit from 1 to 9).
Note that multiple subcomponent/level pairs can be specified in the string. If there are multiple

Joint Interoperability and 4-10 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

subcomponents and it is desired to set the debug level to bethe same for al of them, then the

form: component:*.level will do this (where the “*" specifies all subcomponents).

4.4.16 KeytabFile

The KeytabFile records the name of the keytab file and is used when access to the keytab
database is not accessible. It should match the storage attribute of the matching keytab object.

4.4.17 ClientBind

The ClientBind attribute is read by the client in order to determine what security settings to use
in contacting the server. The value of this attribute contains authentication, authorization and
binding information suitable for communicating with a DCE server. The syntax isalist of two
elements. Thefirst element isalist of security information where the first element isthe
authentication type, either none or dce, followed by information specific for each type. The
type none has no further info. The type dce isfollowed by a principal name, a protection level
(one of default, none, connect, call, pkt, pktinteg, or pktprivacy), an authentication service
(one of default, none, or secret), and an authorization service (one of none, name, or dce).
Examples of three security information lists are:

{none}
{dce /.:/mel man default default dce}
{dce /.:/mel man pktprivacy secret dce}

The second element isalist of binding information, where binding information can be string
bindings or server entry names. Two examples of binding information are:

{/.:/hosts/hostnane/dce-entity /.:/subsys/dce/sec/ master}
{ncadg_udp_i p: 130. 105. 96. 3[123] ncadg_udp_i p: 130. 105. 96. 6] 123] }

The values are obtained by the client and used to establish the security environment for remote
procedure calls using rpc_binding_set_auth_info(3rpc). For COE applications, the suggested
entry is as shown in the sample earlier, using defaults for protection and authentication services.
Refer to the xattr schema(5r pc) man page for additional information.

4.5 Other interfacesfor accessing attributes

No DCECOE interface exists for a server to obtain alist of attributes. See the standard OSF
DCE dce _inquire_server() and dce read_server() interfaces.

Attributes are represented by the sec_attr_t data structure defined in <dce/sec_attr _base.h>. A
useful set of macros is available in <dce/sec_attr_tools.h>.

Joint Interoperability and 4-11 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

4.6 Client configuration objects

When aclient isinstalled, a configuration record is also created. Thisrecord is not used to start
the client, but rather to describe which services the client depends on. The only extended
attributes that are applicable in the client record are the Service, DebugService, and K eytabFile.

The most critical standard attributes for clients are the services attribute(s). There should be one
entry for each server interface used by the application. The interface defines the UUID of the
server interface, and must match the one in the server interface of the same name. The
entryname attribute contains the location of an rpcgroup or rpcprofile in CDS to begin the search
for aserver. For the sample application, the search starts at /.:/h/CAL C/gr oups/ser ver group.
Note that this starting point may be anywhere in CDS, and can be configured differently for
different client machines within acell. This allows different machines to have configurable search
paths for servers.

The following displays the configuration entries for the sample client application:

{uui d 4c31d4da- 365c-11d0-9ac8-ccfc0d7baa77}
{program CALCserver}
{argunents {}}
{prerequisites {}}
{keytabs {}}
{entrynane {}}
{services
{{ifname CALC}
{annotation {Basic cal cul ator application}}
{interface {0073a028-f bdb- 1e53-908e-08002b13ca26 1.0}}
{bindings {}}
{objects {}}
{flags {}} o
{entryname /.../gccs.sm|.m |/ h/ CALC/ groups/ servergroup}}}
{principals {}}
{starton {}}
{uid 0}
{gid 0}
{dir /h/ CALC/ bi n}

Joint Interoperability and 4-12 December 20, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

APPENDIX A - DCECOE MANUAL PAGES

This appendix provides a complete set of man reference pages for the DCECOE library. These
man pages are provided on-line in the ./DCE_API/man directory.

Joint Interoperability and A-1 November 22, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide

Verson 1.0.0.0

COEDCE(3rpc)

NAME

COEDCE COE-unique DCE RPC library

SYNOPSIS

#include <dcecoe/dcecoe.h>

DESCRIPTION

Functions in the DCECOE RPC library provide a simplified mechanism for developing
client-server applications using the OSF DCE services. All of the procedure calls required
to initialize a DCE client or server are consolidated into a single procedure call. The
routines make use of sensible, but overridable, defaults to simplify the development of
applications. The DCECOE library takes advantage of and provides easy access to many
of the features of OSF DCE Version 1.1, as described below.

Functions

The DCECOE library consists of the routines listed below and described in separate man

pages.

Server-side routines:
COEDCEInitialize _server()
COEDCEsignal_server()
COEDCEcreate_acl()
COEDCEis_auth()
COEDCEfinalize_server()

Client-sideroutines:
COEDCEinitialize client()
COEDCElocate_server()
COEDCEgetvector()
COEDCEinquire_server()
COEDCEstart_server()
COEDCEfree_servers()
COEDCEfinalize_client()

Features

Security

Initializes a DCE server.
Signal a server to enter listen loop.
Creates an access control list (ACL).
Makes an authorization decision.
Terminate server resources.

Initializes a DCE client
Locates a server
Retrieves a binding vector
Getsinfo about a server
Prepare a handle for communications with a server
Frees a server
Frees allocated resources

The security of an RPC connection can be configured to any level from unauthenticated to
authenticated and encrypted. The DCECOE routines automatically perform server login,

Joint Interoperability and
Engineering Organization

A-2 November 22, 1996

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0
authentication, password maintenance, and security context refresh. They guarantee that
clients use appropriate security choices as required by servers. DCE security mechanisms
are used to identify and authenticate servers rather than inquiring of servers themselves for
security identification.

ACL Management/Reference Monitor
The server routines include an access control list (ACL) manager to allow remote
management of ACL's for the server. An application may define its own functions to be
controlled (e.g. read/write/delete for storage, print/control for a printer, view/update for
document, etc.). At built-in reference monitor makes access decisions based on the
contents of the ACL database and performs access auditing.

Server Administration
The DCECOE server library implements a management interface that allows the server to
be remotely managed using the standard dcecp file locations, and application
configurables, are maintained as extended attributes within CDS.

Server Startup
The DCECOE client library provides functions to allow a server to be started on demand
if oneis not currently running.

Server Connection and Query
The client library alows the client to connect to any available server, or to locate all
available servers and retrieve information about the serversin order to make a connection
decision. Decisions can be made based on the availability of the server, the objects
maintained by the server, or any other information agreed upon between the client and
server and recorded in the configuration information within CDS.

Auditing
The server routines maintain an audit file that can be written by the reference monitor or
the application using standard OSF DCE audit functions.

Serviceability M essages
The DCECOE library functions make use of the OSF DCE 1.1 serviceahility interfacesto
generate and manage error messages. The server management interface allows messages
of different severity to be turned on or off and routed to different locations (e.g. error log,
stderr, etc.).

FILES

Joint Interoperability and A-3 November 22, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

{usr/include/dcecoe/dcecoe.h
{usr/lib/libdcecoe.a
/opt/dcelocal/nlsymsg/dcecoe.cat

SEE ALSO
DCECOEcreate acl(3dce)
DCECOEinitialize_server(3dce)
DCECOEinitiadize_client(3dce)
DCECOEis_auth(3dc
DCECOEfinalize_server(3dce)
DCECOEfinalize client(3dce)
DCECOElocate _server(3dce)
DCECOEgetvector(3dce)
DCECOEinquire_server(3dce)
DCECOEfree_servers(3dce)
DCECOEsignal_server(3dce)
OSF DCE Application Development Guide - Core Components

NOTES

None

manual page source format generated by RosettaM an v2.5a6,available via anonymous ftp from
ftp.cs.berkeley.edu:/uch/people/phelps/tcltk/rman.tar.Z

Joint Interoperability and A-4 November 22, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

COEDCEcreate acl(3rpc)

NAME
COEDCEcreate_acl - Creates an access control list (ACL)

SYNOPSIS
#include <dcecoe.h>

error_status t COEDCEcreate acl(object_p_t objp);

PARAMETERS
objp
A pointer to an object structure describing the new object

DESCRIPTION
The COEDCEcreate _acl() routine creates a new ACL object. It is used by an server which
manages dynamic objects (such as afile system). It isintended to be called from a
successful create object operation (such as open(), creat()). The other way to create ACLs
isduring ACL initialization (see aclsetup).

RETURN VALUES
dce _error - aDCE error isresponsible for failure, see dce _error_ing_text(3)

SEE ALSO

manual page source format generated by RosettaM an v2.5a6,available via anonymous ftp from
ftp.cs.berkeley.edu:/uch/people/phelpg/tcltk/rman.tar.Z

Joint Interoperability and A-5 November 22, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

COEDCEfinalize client(3rpc)

NAME
COEDCEfinalize_client - Frees allocated resour ces

SYNOPSIS
#include <dcecoe.h>

void COEDCEfinalize_client(
unsigned32 flags,
error_status t *status);

PARAMETERS
flags
A set combinable option flags.

status
A pointer to avariable to hold areturn status.

DESCRIPTION
The COEDCEfinalize client() routine frees the resources belonging to the client. It is
made by a client application prior to application termination. This call is not necessary
unless COEDCEinitialize_client() returns successfully.

FLAGS
C_LOGOUT
Performs a DCE logout and destroys the associated credentials file. This option
will remove your current credentials if you did not use C_LOGIN in
COEDCEinitialize_client().

RETURN VALUES
No valueis returned.

SEE AL SO
COEDCEinitialize client()

manual page source format generated by RosettaM an v2.5a6,available via anonymous ftp from
ftp.cs.berkeley.edu:/uch/people/phelpg/tcltk/rman.tar.Z

Joint Interoperability and A-6 November 22, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

COEDCEfinalize_server(3rpc)

NAME
COEDCEfinalize_server - Terminate resour ces

SYNOPSIS
#include <dcecoe.h>

void COEDCEfinalize server();

PARAMETERS
None

DESCRIPTION
The COEDCEfinalize_server() routine terminates any resources obtained for the server
during COEDCEinitialize_server(). This routine need not be used unless
COEDCEinitialize_server() completes successfully.

SEE ALSO
COEDCEInitialize server()

manual page source format generated by RosettaM an v2.5a6,available via anonymous ftp from
ftp.cs.berkeley.edu:/uch/people/phelpg/tcltk/rman.tar.Z

Joint Interoperability and A-7 November 22, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

COEDCEfree _servers(3rpc)

NAME
COEDCEfree servers- Freesa server

SYNOPSIS
#include <dcecoe.h>

unsigned32 COEDCEfree_servers(
server_t *servers,
unsigned32 count,
error_status t *status);

PARAMETERS
servers
A pointer holding allocated server structures returned by a successful call to
COEDCEinquire_server() client's configuration record. servers can point to one or
more server_t structures depending on the count supplied to
COEDCEinquire_server().

count
The number of server structures pointer to by “servers parameter.

status
A pointer to a variable used to hold the DCE return status.

DESCRIPTION
The COEDCEfree_servers() routine frees any server_t structures and associated resources
passed to it. This function should be used after the server_t structures are no longer
needed.

RETURN VALUES
bad parameter - APl arguments are malformed

SEE ALSO
COEDCEinquire_server()

manual page source format generated by RosettaM an v2.5a6,available via anonymous ftp from
ftp.cs.berkeley.edu:/uch/people/phelpg/tcltk/rman.tar.Z

Joint Interoperability and A-8 November 22, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

COEDCEgetvector (3rpc)

NAME
COEDCEgetvector - Retrieves a binding vector

SYNOPSIS
#include <dcecoe.h>

rpc_binding_handle t COEDCEgetvector();

PARAMETERS
None

DESCRIPTION
The COEDCEgetvector() routine retrieves a binding vector obtained using
COEDCElocate_server().

RETURN VALUES
Returns a pointer to a vector, or NULL if none was found.

SEE ALSO
<dce/rpcbase.h> containsthe definition for therpc_binding_vector t.
COEDCElocate server() is used to obtain the binding vector.

manual page source format generated by RosettaM an v2.5a6,available via anonymous ftp from
ftp.cs.berkeley.edu:/uch/people/phelpg/tcltk/rman.tar.Z

Joint Interoperability and A-9 November 22, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

COEDCEinitialize _client(3rpc)

NAME
COEDCEinitialize _client - Initializesa client

SYNOPSIS
#include <dcecoe.h>

unsigned32 COEDCEinitialize_client(
char * segmentname,
unsigned32 flags,
error_status t *status);

PARAMETERS
segmentname
A string containing the name of the SEGMENT. This name must conform to the
COE/DCE naming standards and consist of 4 uppercase characters. The name
suppliesis postpended with ““client" for form the name of the requisite DCED
srvrconf configuration record.

flags
A set of options which can be combined to produce a variety of client behaviors.
See the description for restrictions and a list of mandatory extended attributes

required for each flag.

status
A pointer to avariable to hold the DCE return status.

DESCRIPTION
The COEDCEinitialize_client() routine reads the client's configuration record and
performs initialization of DCE serviceability, DCE messaging, and non-interactive login
and context refresh depending on the C_LOGIN and C_REFRESH flags.

FLAGS
C_LOGIN
Performs a DCE login using a keytab file. Required DCE Attributes. keytabs,
principals Required Extended Attributes: KeytabFile
C_REFRESH
Perform login refresh (assumes login via a key file). Available only with the
C_LOGIN flag.
Joint Interoperability and A-10 November 22, 1996

Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

ADDITIONAL ATTRIBUTES
Service
production level serviceability settings

DebugService
debug level serviceability settings

RETURN VALUES
bad parameter - request arguments are malformed
bad_configuration - local DCED configuration record is missing or unusable
bad flags - invalid or conflicting flags
dce_error - aDCE error isresponsible for failure, see dce_error_ing_text(3)

manual page source format generated by RosettaM an v2.5a6,available via anonymous ftp from
ftp.cs.berkeley.edu:/uch/people/phelpg/tcltk/rman.tar.Z

Joint Interoperability and A-11 November 22, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

COEDCEinitialize _server(3rpc)

NAME
COEDCEinitialize_server - Initializesa DCE server

SYNOPSIS
#include <dcecoe.h>

unsigned32 COEDCEinitialize server(
unsigned char * segmentname,
unsigned32 flags,
callbacks p t callbacks,
error_status t *status);

PARAMETERS
segmentname
The segmentname of the server's SEGMENT (4 uppercase characters). This
argument is postpended with ““server" to form the configuration record namein

the DCED srvrconf database.

flags
A set of options which modify the behaviors of the server

callbacks
A pointer to a structure defining optional callbacks used for further customization

of the DCE server

status
A pointer to avariable to hold a DCE return status code.

DESCRIPTION
The COEDCEinitialize_server() routine performs comprehensive server initialization for a

DCE server. It is controlled largely by a set of attributes placed in the DCED
configuration repository and can be further customized using an array of callback
functions.

FLAGS
S LOGIN
Perform a DCE login using a key file. Required DCE Attributes: keytabs,
principals Required Extended Attributes: KeytabFile

Joint Interoperability and A-12 November 22, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

S REFRESH
Perform login refresh (assumes login via a key file).

S AUDIT
Initializes the server for auditing Required Attributes: AuditTrail,
AuditFirst, AuditEvents, AuditM sgs, AuditClasses

S HDATA
Creates the "audit' hostdata entry for remote access to the audit trail file.

S ACL
Initialize the server's ACL management/r efer ence monitor Required
Attributes. AclSetup, AcIMgrUuid, AclMgrinfo, AcIMgrDesc,
AcIM grDefault, AcIM gr Type, DefaultAcl Optional callbacks: Use
the “objclassfunc' callback to provide object/container mapping for a multi-
level ACL manager

S LISTEN
Perform arpc_server_listen() rather than returning. Return after the server stops
listening.

S WAIT
Wait until signaled via a condition variable before doing the rpc_server_listen().
See COEDCEsigna_server() for signaling.

S CLEANUP
Perform full cleanup after returning fromrpc _server listen().

S KEYMGMT
Perform DCE key management (i.e. changing of passwords as required by the
Registry properties).

S MGMTAUTH
Initialize the server's management authorization function. Required
Attributess. MgmtMapping, MgmgAcl, MgmtAcIMgr Optional
callbacks. Use the 'mgmtauth’ callback to register a user defined callback
function

S CDSEXPORT

Export information into CDS as configured in the srvconf record.

Joint Interoperability and A-13 November 22, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

ADDITIONAL ATTRIBUTES
Service
production serviceability settings

DebugService
debug serviceahility settings

DcecpOp
run the following dcecp operations during startup

ServerThreads
allow a maximum concurrency value (call threadsin rpc_server listen)

RETURN VALUES
bad_configuration - local DCED configuration record is missing or unusable

dce _error - aDCE error isresponsible for failure, see dce _error_ing_text(3)
SEE ALSO

COEDCEsignal_server() - used to resume awaiting server (S_WAIT)
COEDCEserver_finalize() - used to perform cleanup when S_ CLEANUP is not used

manual page source format generated by RosettaM an v2.5a6,available via anonymous ftp from
ftp.cs.berkeley.edu:/uch/people/phelpg/tcltk/rman.tar.Z

Joint Interoperability and A-14 November 22, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

COEDCEinquire_server(3rpc)

NAME
COEDCEInquire_server - Getsinfo about a server

SYNOPSIS
#include <dcecoe.h>

unsigned32 COEDCEinquire_server(

unsigned32 flags,

unsigned32 service,
unsigned32 *count,
server_t **servers,

rpc_binding_handle t object,
error_status t *status);

PARAMETERS
flags
A set of combinable option flags which determine the type of information returned
about the server

service
The index of the service description in the client's configuration record, about
which information is being requested

count
A pointer used to indicate the maximum number of server instances about which
dataisrequested

servers
pointer to a pointer used to hold allocated structures by the routine if information
was successful

handle
An RPC binding handle indicating the server host to query

status
A pointer to avariable to hold areturn status.

Joint Interoperability and A-15 November 22, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

DESCRIPTION
The COEDCEinquire_server() routine retrieves configuration information about defined
or running servers. This call uses the binding handle to contact the DCED to inquire either
the srvrconf or srvrexec databases.

Use the COEDCEfree_servers() call to return allocated storage.

FLAGS
Only one of the following flags can be used.
C_CONF
Retrieve information about a single configured server. This queries the
configuration record (template) maintained for the server.

C_EXEC

Retrieve information about “count' running servers. This returns execution state
information as well as the configuration data.

RETURN VALUES
bad parameter - request arguments are malformed

bad_configuration - local DCED configuration record is missing or unusable
bad flags - invalid or conflicting flags
dce_error - aDCE error isresponsible for failure, see dce_error_ing_text(3)
SEE ALSO
COEDCElocate_server() isused to obtain binding vector COEDCEfree_servers() is used
to free server structures returned by COEDCEinquire_server() <dce/dced_base.h> - the
DCE header containing the server_t structure definition.
BUGS
The C_CONF option is not yet implemented.

manual page source format generated by RosettaM an v2.5a6,available via anonymous ftp from
ftp.cs.berkeley.edu:/uch/people/phelpg/tcltk/rman.tar.Z

Joint Interoperability and A-16 November 22, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

COEDCEis authorized(rpc)

NAME
COEDCEis authorized - M akes an authorization decision

SYNOPSIS
#include <dcecoe.h>

aud ed cond t COEDCEis_authorized(
clientid p t clientp,
unsigned32 auditevent,
object p t objp,
dce and_rec_t *auditrecp,
error_status t *status);

PARAMETERS
clientp
A pointer to a structure identifying the client whose identity is used for the
authorization. This structure is allocated and initialized in the server's manager
function. For example:
COEDCECclientid_t clientid;
clientid.identity = ID_HANDLE;
clientid.handle = h;

auditevent
If non-zero, this event is used to create an audit event. This event is taken from the
message header file produced by sams. For example, if the Segment name was
“CALC", and the CALC.sams file used "cal' as the component name, including
““deecalmsg.h" would contain the definitions of each audit event.

objp
An object structure describing the object to be located, the permissions required,
the type of object, etc. This structure is defined in the application's manager logic.
For example:
COEDCEObject_t object;
memset(& object, 0, sizeof(object)); /* thisis the ACL name in the database
* [object.name = "“calculator";
[* thisisthe ACL permission value to test */ object.permname = ~a’;
[* thisistype of ACL object */ object.obj_type =
sec_acl_type default_object;

Joint Interoperability and A-17 November 22, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

auditrecp
If non-null this audit record structure will be initialized with a start audit call. The
caller is expected to commit the audit record. If NULL, the
COEDCEis _authorized() function will open and commit the audit event.

status
A pointer to avariable to hold a DCE return status in case a failure condition
OCCUrs.

DESCRIPTION
The COEDCEIs_authorized() routine makes a decision as to whether or not the client can
perform the requested function.

RETURN VALUES
One of the following audit conditionsis returned:
aud c ed cond_success
aud c ed _cond failure
aud c ed _cond denial

STATUS CODES
bad_configuration - invalid or incomplete server configuration record

bad flags - invalid or conflicting flags
SEE ALSO

<dcecoe.h> - for definitions of the COEDCEobject and COEDCEclientid structure.
dce_aud_commit() - the DCE man page for committing an audit record.

manual page source format generated by RosettaM an v2.5a6,available via anonymous ftp from
ftp.cs.berkeley.edu:/uch/people/phelpg/tcltk/rman.tar.Z

Joint Interoperability and A-18 November 22, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

COEDCElIlocate server(3rpc)

NAME
COEDCEIlocate _server - Locates a server

SYNOPSIS
#include <dcecoe.h>

unsigned32 COEDCElocate_server(
unsigned32 flags,

unsigned32 Service,
unsigned32 object,
unsigned32 *count,

error_status t *status);

PARAMETERS
flags
A set of combinable option flags

service
The index of the service description in the client's configuration record.

object
The index of the object in the service description in the client's configuration
record.

count
A pointer used to indicate the number of bindings to return to the client.

status
A pointer to a variable to hold any returned DCE status.

DESCRIPTION
The COEDCElocate server() routine locates servers based on the service definition in the
clients configuration record and makes available a set of binding handles for usein
communicating with appropriate servers or for interrogating using
COEDCEinquire_server().

FLAGS
C_NOOBJ
Do not return objects in the bindings obtained
Joint Interoperability and A-19 November 22, 1996

Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

RETURN VALUES
bad parameter - request arguments are malformed

bad_configuration - local DCED configuration record is missing or unusable

bad flags - invalid or conflicting flags
dce_error - aDCE error isresponsible for failure, see dce_error_ing_text(3)

The returned information isarpc_binding_vector_t obtained using COEDCEgetvector()

manual page source format generated by RosettaM an v2.5a6,available via anonymous ftp from
ftp.cs.berkeley.edu:/uch/people/phelpg/tcltk/rman.tar.Z

Joint Interoperability and A-20 November 22, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

COEDCEsignal_server(3rpc)

NAME
COEDCEsignal_server - Signal a server to enter listen loop

SYNOPSIS
#include <dcecoe.h>

void COEDCEsignal_server();

PARAMETERS
None

DESCRIPTION
The COEDCEsSIgna_server() routine causes a server started with S WAIT flag to
continue, thereby entering its listen loop. Thisis used when a server should become DCE
ready without beginning processing prior to receipt of a specia signal.

SEE ALSO
COEDCEInitialize server()

manual page source format generated by RosettaM an v2.5a6,available via anonymous ftp from
ftp.cs.berkeley.edu:/uch/people/phelpg/tcltk/rman.tar.Z

Joint Interoperability and A-21 November 22, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s
Guide Verson 1.0.0.0

APPENDIX B - SAMPLE APPLICATION

calc.idl

/* Sanple Application client/server

i nterfaces */

[
uui d(0073a028-f bdb- 1e53-908e- 08002b13ca26),

version(1l.0)

i nterface cal cul at or

{
i mport "dce/ dat abase.idl"
const long cal c_s_ok
const long calc_div_by zero
| ong
add (
[in] long a,
[in] long b,
[out] error_status_t *st
| ong
subtract (
[in] long a,
[in] long b,
[out] error_status_t *st
}
calc.acf

/* Sanple Application */

[explicit_handle]
i nterface cal cul at or

add([comm status] st);
subtract ([conm status] st);

}

0;
100;

Joint Interoperability and
Engineering Organization

November 22, 1996

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s
Guide Verson 1.0.0.0

calc.sams

Sanpl e Application nessages for audit events and application
serviceability
#

Part |

This part defines the |owest-|evel table, the one that
contains all the

nmessages (defined in the third part) in a straight array.

conponent ca

tabl e cal _table
t echnol ogy dce

Part |1

This part defines the sub-conponent table, each el ement of

whi ch

contains the base address of one of the sub-conponent message
tables.

serviceability table cal_svc_table handle cal _svc_handl e

start

sub- conponent cal _s_nmnager "manager" cal _i _svc_manager
sub- conponent cal _s_server "server" cal i _svc_server

end

#

Part lla

This part contains event codes for auditing

#

start

code add_event

text "add operation”
action ""
expl anation
end

start

code subtract_event

text "subtract operation”
action ""
expl anation
end

Part |11
This part defines the serviceability messages.
#

start

Joint Interoperability and B-2 November 22, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s

Guide Version 1.0.0.0
code cal _sad_endi ng
sub- conponent cal s server
attributes "svc_c_sev_error”
t ext "server initialize failed"
action "
expl anation ""
end
#
Part llla
Messages for serviceability table
#
Note that there has to be one of these for each of
t he sub-conponents declared in the second part of
the file (above)..
start l'intabl e undocunent ed
code cal _i _svc_manager
t ext " Manager"
end
start l'intabl e undocunent ed
code cal i _svc_server
t ext "Server"
end
Joint Interoperability and B-3 November 22, 1996

Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s
Guide Verson 1.0.0.0

CALCclient.c

/* Sanple client application */

#i ncl ude <dcecoe/ dcecoe. h>
#i nclude "cal c. h"

#defi ne SEGVENTSERVI CE " CALC"

rpc_bi nding_handl e_t sinple(void);
rpc_bi ndi ng_handl e_t conpl ex(voi d);

mai n(int argc, char **argv)

{
unsi gned32 err; /* COE error */
error_status_t dceerr; /* DCE error */
rpc_bi ndi ng_handl e_t handl e;
/* interface client logic */
idl _long_int a, b, c;
char oper and;
error_status_t st;
i nt rc;
err = COEDCEi nitialize_client(SEGVENTSERVI CE, 0, &dceerr);
if (CHECK(err, "initialize_client", dceerr))
exit(l1);
#if 1
handl e = sinple();
#el se
handl e = conpl ex();
#endi f
if (handl e == NULL) {
printf("server not installed correctly\n");
exit(1);
err = COEDCEstart_server (C_PI N§ C_START| C_SECURE, 0, handl e,
&dceerr);
if (CHECK(err, "start_server", dceerr))
exit(1);
/* user interaction */
while (true)
fprintf(stdout, "Operation: (op vall val2) ");
fflush(stdout); fflush(stdin);
Joint Interoperability and B-4 November 22, 1996

Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s
Guide Version 1.0.0.0
rc = fscanf(stdin, "% %d %d", &operand, &a, &b;
if (operand == 'q') break;
switch (operand) {
case ' +':
¢ = add(handl e, a, b, &st);
br eak;
¢ = subtract(handl e, a, b, &st);
br eak;
defaul t:
fprintf(stderr, "Invalid operand\n"); continue;

case

if (st == calc_s_ok)
fprintf(stdout, "%d % %d = %4d\n", a, operand, b,
c);
el se
CHECK _STATUS(st, "operation failed", CONTINUE);
(void *)fgetc(stdin);
}

COEDCEf i nalize_client (0, &st);
}

rpc_bi ndi ng_handl e_t
si npl e(voi d)
{

unsi gned32 count = 2;
unsi gned32 err;
error_status_t dceerr;

err = COEDCEl ocate_server (0, 0, 0, &count, &dceerr);
if (CHECK(err, "locate_server", dceerr) || count < 1)
return NULL;
el se
return (COEDCEgetvector())->binding_h[O];

}

rpc_bi ndi ng_handl e_t
conpl ex(voi d)
{

unsi gned32 count = 100;
unsi gned32 one = 1;
rpc_bi ndi ng_handl e_thandl e = NULL;
server _t *servers;

i nt i

unsi gned32 err;
error_status_t dceerr;

err = COEDCEI ocat e_server (C_NOOBJ, 0, 0, &count, &dceerr);
if (CHECK(err, "locate_server", dceerr) || count < 1)

Joint Interoperability and B-5 November 22, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s
Guide Verson 1.0.0.0

return NULL;

for (i=0; i<count; i++) {
err = COEDCEi nquire_server (C_EXEC, 0, &one, &servers,
(COEDCEget vector())->bi nding_h[i], &dceerr);
if (CHECK(err, "inquire_server", dceerr) || count < 1)
conti nue;

/* pick one based on some criteria */

handl e = (COEDCEget vector())->binding_h[i];
err = COEDCEfree_servers(servers, one, &dceerr);
CHECK(err, "free_servers", dceerr);

/* we found one we |iked */
i f (handle)
br eak;
}

return handl e;

}

CHECK(unsi gned32 err, char *msg, error_status_t dceerr)

if (err == 0) return err
if (err == dce_error)
dce_printf(dceerr);
el se
dce_printf(err);
return err;

Joint Interoperability and B-6 November 22, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s
Guide Verson 1.0.0.0

CALCserver.c

/* Sanple server initialization code */

#i ncl ude <dcecoe/dcecoe. h>/* for use with COEDCE APlIs */
#i ncl ude "cal c. h"

#def i ne SEGVENTSERVI CE " CALC"

mai n(int argc, char **argv)

{
error_status_t st;
COEDCEi niti alize_server (SEGVENTSERVI CE,
S LOG N| S_REFRESH| S_KEYMGMT| S_ACL| S_AUDI T|
S_CDSEXPORT| S_LI STEN| S_CLEANUP| S_MGMIAUTH,
NULL, &st);
exit (st !'= rpc_s_ok);
}

CALCmanager.c

/* Sanpl e Manager code - server */

#i ncl ude <dcecoe/ dcecoe. h>

#i ncl ude "cal c. h" /[* build by IDL */
#i ncl ude "dcecal nsg. h" /* built by SAMS - audit codes */
idl _long_int
add (rpc_bindi ng_handl e_t bh,
idl _long_int a,
idl _long_int b,
unsi gned32 *st)
{

CCEDCEclientid tclient;
COEDCEobj ect _t obj ect;

/* this is how we identify the client */
client.identity = | D_HANDLE;
client.id.handl e = bh;

Joint Interoperability and B-7 November 22, 1996
Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s

Guide Version 1.0.0.0

/* this represents the object to | ook up and the requisite
pernms. */

menset (&obj ect, 0, sizeof(object));

obj ect.nanme = "cal cul ator";

obj ect. permanme = "a"; [* add */

if (COEDCEi s_authorized(&client, add_event, &object, NULL
St) ==

aud_c_esl _cond_success)

return(atb);

[* st has status code */

return -1;
}
id _long_int

subtract (
rpc_bi ndi ng_handl e_t bh,

idl _long_int a,
idl _long_int b,
unsi gned32 *st)

CCEDCEclientid tclient;
COEDCEobj ect _t obj ect;

/[* this is how we identify the client */
client.identity = | D_HANDLE;
client.id.handl e = bh;

/* this represents the object to |ook up and the requisite

perms. */

menset (&obj ect, 0, sizeof(object));

obj ect.nanme = "cal cul ator";

obj ect. permame = "s"; /* subtract */

if (COEDCEi s_authorized(&client, add_event, &object, NULL
St) ==

aud_c_esl _cond_success)

return(a-b);

return(-1);
}
Joint Interoperability and B-8 November 22, 1996

Engineering Organization

DIl COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

APPENDIX C - Acronyms

ACL Access Control List

AP Application Programming I nterface
CDS Cdll Directory Service

CFS Center for Standards

COE Common Operating Environment

COTS Commercia off-the-shelf
C? Command, Control, Communications and Intelligence
C4i Command, Control, Communications, Computers, and Intelligence

DCE Distributed Computing Environment
dced DCE daemon

dcecp DCE Control Program

DFS Distributed File System

DIl Defense Information Infrastructure

DISA Defense Information Systems Agency
DNS Domain Name Service

DTS Distributed Time Service

dtsd Distributed Time Service Daemon

ERA Extended Registry Attribute

GCCs Global Command and Control System
GCSS Global Combat Support System

GDS Global Directory Service

GPS Global Positioning System

LAN Local Area Network

NFS Network File System
NTP Network Time Protocol

OSF Open Software Foundation

RPC Remote Procedure Call

WAN Wide Area Network

Joint Interoperability and C-1 November 22, 1996
Engineering Organization

